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Abstract—We propose to use a genetic algorithm to evolve
novel reconfigurable hardware to implement elliptic curve crypto-
graphic combinational logic circuits. Elliptic curve cryptography
offers high security-level with a short key length making it one of
the most popular public-key cryptosystems. Furthermore, there
are no known sub-exponential algorithms for solving the elliptic
curve discrete logarithm problem. These advantages render
elliptic curve cryptography attractive for incorporating in many
future cryptographic applications and protocols. However, elliptic
curve cryptography has proven to be vulnerable to non-invasive
side-channel analysis attacks such as timing, power, visible light,
electromagnetic, and acoustic analysis attacks. In this paper,
we use a genetic algorithm to address this vulnerability by
evolving combinational logic circuits that correctly implement
elliptic curve cryptographic hardware that is also resistant to
simple timing and power analysis attacks. Using a fitness func-
tion composed of multiple objectives — maximizing correctness,
minimizing propagation delays and minimizing circuit size, we
can generate correct combinational logic circuits resistant to non-
invasive, side channel attacks. To the best of our knowledge,
this is the first work to evolve a cryptography circuit using a
genetic algorithm. We implement evolved circuits in hardware
on a Xilinx Kintex-7 FPGA. Results reveal that the evolutionary
algorithm can successfully generate correct, and side-channel
resistant combinational circuits with negligible propagation delay.

Index Terms—Elliptic curve cryptography, genetic algorithms,
reconfigurable hardware design, side-channel attacks

I. INTRODUCTION AND MOTIVATION

Elliptic curve cryptography (ECC) is a widely accepted
public-key cryptosystem that provides better security-per-bit
than other public-key cryptosystems (e.g., RSA) and discrete
logarithm cryptosystem (e.g., Elgamal) [1]. This allows ECC
to have a shorter key length than RSA which engenders
advantages such as reduced computing effort, and less storage
requirement. These features make ECC amenable to ubiquitous
embedded applications found in personal digital assistants
(PDAs), cell phones, smartcards, and many devices associated
with the Internet of things (IoT) paradigm. In addition, shorter
key lengths reduce computing effort and make ECC faster
than other public-key cryptographic approaches for private-
key operations such as signature generation or key manage-
ment [1]. The performance disparity between ECC and other
cryptosystems expands dramatically as we move from low to
high security-level cryptosystem. RSA is generally reported
to be 10x slower than ECC at a 128-bit security-level and
50x to 100x slower at a 256-bit security-level for private
key operations [2], [3]. Consequently, many new cryptographic

protocols are moving away from RSA towards elliptic curves.
This transition is even faster in the embedded domain where
ECC’s cost/performance benefits quickly become significant
due to the inherent resource constraints in embedded systems.

Although, cracking ECC has proved to be a mathemati-
cally difficult problem, the advent of cryptanalytic attacks on
implementations, also known as side-channel attacks (SCAs),
has overturned this traditional concept through the fine-grained
analysis of sensitive leakages such as timing, power, Vvisi-
ble light, electromagnetic, and acoustic side-channel infor-
mation [4]. In timing analysis attacks, an adversary obtains
private information by carefully measuring the time it takes
for the device to carry out cryptographic operations. Such
measurements are possible because different cryptographic
operations take different computation time and can potentially
be used to reveal the encrypted information after careful
statistical analysis.

Power analysis attacks are other prevalent forms of SCAs.
Power analysis attacks are classified as simple, differential,
and refined power analysis attacks. In simple power analysis
attacks, an attacker analyzes the power trace in order to guess
which particular instruction is being executed at a certain
time and what are the values of corresponding inputs and
outputs. Therefore, an attacker needs exact knowledge of
the implementation to mount simple power analysis attacks.
However, in differential and refined power analysis attacks,
an adversary uses knowledge of standard implementation
techniques and exploits comprehensive statistical methods to
analyze the power consumption profile and thus extract secret
information. Electromagnetic analysis attacks capitalize on the
electromagnetic radiation generated by electronic components
while running the cryptographic algorithm to infer secret
information. Another, recent SCA uses acoustic analysis of
the acoustic emanations from a processor while the processor
is running cryptographic procedures to extract the secret
information [5].

The non-invasive SCAs on ECC implementations can be
performed at low cost with high accuracy [6]. This causes
unprotected ECC implementations to leak key-dependent se-
cret information via side-channels. In order to conceal this
information from adversaries, a multitude of work has been
done at both the algorithmic and hardware implementation
levels. At the algorithmic level, randomization of the private
exponent by exponent splitting, blinding the base point P



used to generate the public key, and using randomized projec-
tive coordinates provide three common countermeasure tech-
niques. [7], [8], [9] incorporate these algorithmic techniques to
shield simple and differential power analysis attacks. However,
the additional costs incurred in terms of the additional software
implementation time and in terms of additional hardware
implementation area are some of the potential shortcomings
of these methods. In addition, others [10], [11] have proposed
designing and using a side-channel resistant co-processor for
ECC. However, sequential circuits (or synchronous circuits)
based processor architectures proposed in [10], [11] suffer
from a number of limiting factors such as increased diffi-
culty of clock distribution, increased clock rates, decreased
feature size, increased power consumption, timing closure
effort, and difficulty with design reuse. The increased clock
rate increases power consumption, noise, and electromagnetic
emissions from the circuit. This makes sequential circuits more
susceptible to power, noise, and electromagnetic emission
analysis attacks. Another major drawback of sequential circuits
is that an attacker is able to precisely isolate start times and end
times of operations guided by the timing reference generated
by the clock to perform the segmentation of power and energy
side-channel information which allows an adversary to model
the operational behavior of the ECC hardware through rigorous
statistical analysis and thus infer the secret information [12].

To address these limitations, we propose a novel genetic
algorithm (GA) based approach for designing ECC circuits
that are resistant to simple timing and power analysis attacks.
In contrary to [10], [11], we design a pure combinational
logic circuit for ECC processors. The ECC processor uses
three different combinational circuit modules to perform basic
elliptic curve point operations — point addition, point doubling,
and point (or scalar) multiplication. The primary advantage
of using combinational circuits is that unlike sequential cir-
cuits, combinational circuits are hard to analyze because they
cannot be segregated into multiple operational sub-stages.
Furthermore, the effective power analysis attacks based on
hamming weight and hamming distance are suitable only for
the sequential logic circuits like register files and buses but
not for the multi-input combinational logic circuits. The only
attack that we found in the literature is power template attack
proposed by Zheng et al. [13]. However, this attack could
be ineffective for 160-bit input ECC processor because the
attacker was successful only for 5-bit input combinational
circuit (refer section IV). Furthermore, our non-conventional
circuit design approach using GA can impede the attack
methodology used in [13].

We used the CHC adaptive search algorithm as our GA [14]
to design combinational logic circuit for ECC. To start,
we wrote a genetic algorithm to generate 3,4,6, and 8-
bit combinational circuits on the path towards the design
of full sized 160-bit ECC circuit. The reasons for using
GA to design combinational logic circuits are in two folds.
First, the combinational logic circuits designed using GA
would be a highly (we hoped) non-conventional circuits which
bolster the security of the resulting cryptosystem. Second,

GA can design large combinational logic circuits which are
infeasible to design manually. Finally, results shows that our
GA can generate functionally correct side-channel resistant
combinational circuits for point arithmetic in elliptic curve.
Our major contributions are:

o We propose a side-channel resistant reconfigurable ECC
processor evolved using genetic (evolutionary) algorithm.
The genetic algorithm optimizes for minimal execution
time and minimal area footprint. To the best of our
knowledge, this is the first work that leverages genetic
algorithm to evolve a digital combinational circuit for
cryptographic applications.

o We implement our proposed reconfigurable ECC proces-
sor on a Xilinx Kintex 7 field-programmable gate array
(FPGA).

« We quantify the propagation delay and size of the evolved
combinational logic circuits.

II. RELATED WORK

Various previous works have studied design of side-channel
resistant elliptic curve cryptosystem. A great deal of work has
been done both in algorithm level and hardware level to design
a secure side-channel resistant ECC. [7], [8], [9] proposed
algorithm level methods to defend against side-channel attacks.
These methods comprised of one or combination of following
techniques: 1) key blinding technique which involved ran-
domizing base point (used to generate public key) by using
elliptic curve isomorphism or field isomorphism, 2) private key
randomization by key splitting technique, 3) using randomized
projective coordinate to represent the elliptic curve, and 4)
using some form of double-and-add-always algorithm for
scalar multiplication. However, the potential shortcomings of
these methods is that they incur additional costs in terms of
time and instruction count for software implementations and
in terms of area for hardware implementations.

Moreover, in the hardware based solution spectrum, Liao
et al. [10] proposed a non-invasive side-channel attack re-
sistant coprocessor for ECC which provided side-channel
resistance with low area-time-product overhead. The basic
countermeasures used in the proposed processor relied on the
underlying finite field arithmetic in randomized Montgomery
domain, which could blind the intermediate value in the
iterations of scalar multiplication to prevent the adversaries
from cracking the private key by statistical methods. In ad-
dition, the author also optimized the modular division and
multiplication algorithms to fix the operating times to resist
some timing attacks. Furthermore, Lee et al. [11] proposed a
power-analysis-resistant dual-field ECC processor using het-
erogeneous dual-processing-element architecture. The authors
leveraged priority-oriented scheduling of right-to-left double-
and-add-always elliptic curve scalar multiplication with ran-
domized processing technique to achieve a power-analysis
resistant dual-field ECC processor. Thus, [10] and [11] are
hardware based solutions where authors designed a sequential
circuit to perform ECC arithmetic such as scalar multiplica-
tion, point addition, etc. One major limitation of memory-



based sequential circuits is that it can be divided into a
number of operational sub-stages that allows an adversary to
perform some form of rigorous statistical analysis to model
the operational behavior of the ECC hardware.

III. ELLIPTIC CURVE CRYPTOGRAPHY

In this section, we first briefly introduce the fundamentals
of ECC. Then, we elaborate on the basic point arithmetic
algorithms that are necessary to form a fitness function for
our evolutionary algorithm (refer section IV).

ECC [15] is based on the algebraic structure of elliptic
curves over the finite fields. For our work, we use the elliptic
curve over the prime finite field Zp where prime number
P = 29. Eq. 1 shows the elliptic curve we employ for our
ECC (refer algorithm 2). The coefficients a and b are set to 4
and 20, respectively, as an design example. For our study, we
have used this simple elliptic curve. However, for real world
implementation, we can use more secure elliptic curves [16].

Ex,y): vy =a>+ax +0 (1)

Algorithm 2 shows double-and-add algorithm for the most
important operation (i.e., multiplication) in ECC, which is
also used in private and public key-pair generation. Point
multiplication (refer algorithm 1) is carried out between the
base point on curve and a scalar value (the secret key or
private key) to generate the public key which is also a point
on the elliptic curve. The inability to compute the secret
scalar value given the base point and public key is the elliptic
curve discrete logarithm problem. The security of elliptic curve
based protocols relies on elliptic curve discrete logarithm
problem.

Point addition and point doubling are two other basic
arithmetic operations involved in elliptic curve cryptography.
Consider M = (z1,y1) € E[Zp] and N = (22,y2) € E[Zp),
where M # N. Then, point addition of M and N is denoted

by M + N = (x3,y3) and is given by,
(z3,y3) = (\* — 21 — @2, M1 — T3) — 111) 2
where, A = 22 Similarly, for point M = (z1,41) €

E[Zp] such that M ;é —M, point doubling of M is denoted

by 2M = (z3,y3) and is given by,

(z3,3) = (A* = 221, A(21 — 23) — 11 3)
where, A = 31;% Finally, point multiplication between two
points M = (z1,y1) € E[Zp] and N = (z2,y2) € E[Zp],

where M # N is denoted by M x N = (x3,y3) and is
computed by using Double-and-Add algorithm as shown in
algorithm 1.

IV. GENETIC ALGORITHM FOR COMBINATIONAL LOGIC
CIRCUIT DESIGN

A GA can be used as an engine to discover new designs
of digital circuits because it allows one to explore a much
larger space of possible designs [17], [18], [19], [20]. The
prime advantage of employing GA is that the designs that
are generated by GA are often radically different from those

Algorithm 1 Double-and-Add algorithm for point multiplica-
tion in ECC.
Input: Elliptic curve £[Zp], an elliptic curve point N, and a
scalar k of k; bits.
Output: M = kN
t = number of bits of k
P = prime number
Initialization:
M+ N
Core Algorithm:
for i =t — 1downto O do
M — (M + M)modP
if k; = 1 then
M (M 4 N)modP
end if
return (M)
end for

Algorithm 2 ECC key generation algorithm.

Input: ECC Parameters: Elliptic curve E£[Zp], an elliptic
curve point G, prime number P, private key k., public
key kpub

Output: private and public key pair
Core Algorithm:

kpr < random number in [1, P]
kpub — kpr -G

produced by top-down, human, rule-based approaches. Most
of the time, evolved circuits are found to be more efficient
than those created using traditional design methods [19]. We
use a GA to generate combinational logic circuits that perform
point operations (e.g., point addition, point doubling, and point
multiplication) in elliptic curve.

In combinational logic circuits (sometimes also referred to
as time-independent logic circuits), outputs are pure function
of present inputs only and do not need memory of any sort
to perform their internal operations. So, an attacker does not
have memory (e.g., registers) as an attack surface to exploit
in order to analyze the circuit under operation. Furthermore,
unlike sequential circuits, combinational circuits do not use
clock and does not have distinct multiple stages of operation.
Therefore, for all possible inputs, all of the components of
a combinational circuit (gates and wires) are functioning
and contributing towards the propagation delay and power
consumption of the whole circuit. Consequently, simple timing
and power analysis attacks are usually not effective to learn
the operational behavior of a combinational circuit.

Zheng et al. [13] proposed a power template match attack
on combinational circuits. In order to mount the attack, first,
the authors build power model template of a combinational
circuit. The power model template is developed based on
the input transitions of combinational logic circuit. Using
this power model template, they estimate the average power
consumption of the modeled combinational circuit. Then, they
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TABLE I: Parameters for our CHC GA
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Fig. 1: Chromosome representing a combinational circuit for
point arithmetic.

implement the combinational circuit in hardware and measure
the actual power consumption. By computing the correlation
of the average power consumption from power model tem-
plate and actual power consumption, they are able to recover
the secret key. This attack works on combinational circuits
designed using the standard-cell libraries based on forward
application-specific integrated circuit (ASIC) design flow with
synchronous design style. It is an alarming work provided
that most of the cryptographic circuit designers use the same
process and same electronic design automation (EDA) tools
as the authors have used. On that account, it is obvious that
security risks exist in the standard-cell based design flow that
has no special consideration of protection for combinational
circuit design.

However, our combinational circuit design approach is
secure and robust against such attack because of three reasons.
First, we use a GA to evolve non-conventional combinational
circuits. So, it will be difficult for an attacker to design the
same circuit to mount the power template attack. Moreover,
GA generates multiple circuits which are functionally same.
Thus, we can dynamically switch from one circuit to another
to augment the security of our combinational circuit (refer
section V). Second, Zheng et al. [13] was successful to mount
an attack on S-box of PRINTcipher which has 5-bit input and
3-bit output. The small input length (5-bit) made the design
of power model template feasible because the circuit has only
2% x 2% = 1024 possible input transitions. However, our elliptic
curve cryptosystem will have 160-bit input which will have
2160 5 2160 hossible input transitions. It is apparent that it will
be infeasible to take into account all of these input transitions
to build an effective power model template to mount template
match attack. Third, to augment the resistance of our evolved
circuit against SCAs, we can convert the combinational circuit
generated by GA into multi-threshold dual-spacer dual-rail
logic (M T D3 L) asynchronous circuit which has much smaller
side-channel leakages [21].

In this section, we first delineate the encoding of combina-
tional circuit in chromosome for our GA. Next, we elaborate
on the fitness function used in our GA.

Encoding a Digital Circuit as a Binary Chromosome: In
GA, a solution is represented by chromosome and fitness value
associated with the chromosome. Usually, chromosome is a
string of binary values 0’s and 1’s. For our digital circuit

Parameter Name Symbol Value
Crossover Rate Peross 0.9
GATE_ID| IP1_ID | IP2_ID| GATE_ID [ 1P1_ID | IP2_ID|GATE_ID| - + + | 1P1_ID | IP2_ID| GATE_ID
Chromosome Length Lehrom 1020, 1680, 2400, 3960
Chromosome length = M * [ GATE_ID + (N-1) * (IP1_ID + IP2_ID + GATE_ID) ] Crossover Threshold Xin 0.2 Lenrom
Population Size 4 300
GATE_ID [1P1_ID | 1P2_ID [GATE_ID [1P1_iD | 1P2_ID |GATE_ID |- - - [ iP1_1D [ 1P2_ID [GATE_ID Generations o 200
Elite Density p 025 ¢
GATE_ID |1P1_ID | 1P2_ID |GATE_ID |1P1_ID |1P2_ID|GATE_ID |- - - | 1P1_ID |I1P2_ID [GATE_ID Randomization Coefficient 5 0.35 L.
. cnrom

design problem, the solution is a combinational circuit. In our
work, encoding of a digital combinational circuit into genotype
is done by using 2D binary chromosome (refer Fig. 1). The
chromosome has N vertical levels where each level has M
gates. We have used eight different types of gates, which
are shown in Table II. In that account, three bits are used to
represent a gate in binary (e.g. GATE_ID or g in Fig. 1). Level
0 gates act as input interface that take input from external
sources. Level 1 to level N-1 forms the functional circuit
for target algorithm (e.g., point addition, point multiplication).
Outputs of gates at level N-1 produce output values.

We used two types of gates to build our combinational
circuit: two-input one-output gates (e.g., AND, OR) and one-
input one-output gates (e.g., NOT, wire). Fig. 1 shows the
2D structure of the chromosome used in our GA. The output
of the gates at each level are indexed by numbers from 0 to
(M — 1). These outputs are connected to inputs of the gates
of next level. Hence, the inputs of the gates at a level are also
indexed by a number from 0 to (M — 1). Thus, log, (M) bits
are needed to encode an index into binary. The input index
IP1_ID (or i) and IP2_ID (or j) are represented by log, (M)
bits binary value. Therefore, the length of chromosome is
given by M x(g+ N x(i+j)). The length of the chromosomes
that we used for our GA are shown in Table I.

We wrote GA to design four different types of combina-
tional logic circuits. These circuits differ in the size of input
point which could be 3,4,6, or 8-bit. We generated four
combinational logic circuits having 10 x 10, 10 x 16, 20 x 10,
and 20 x 16 circuit configurations. A 10 x 16 circuit has 10
levels (from O to 9) and each level has 16 gates. The same
rule applies to the other three circuit configurations. A 10 x 16
circuit works on 4-bit input values. 10x10, 20x 10, and 20x 16
circuits work on 3, 6, and 8-bit input values, respectively. The
input values are the points in the elliptic curve over prime field
Zp.

Fitness Function: A primary operation involved in a GA is the
evaluation of adherence of evolved solutions to the imposed
constraints. GA uses a fitness function to evaluate the com-
petence of evolved solutions. The fitness function for our GA
is based on aggregation by variable objective weighting [22]
which uses the weighted-sum method for fitness assignment.
Thereby, each objective is assigned a weight 5; € (0,1)
such that >° 38, = 1, ¢ € {1,2,--- ,m} where m is the
number of objectives. The scalar fitness value is calculated
by summing up the weighted objective values f; - fi(z)
which is equal to 1. In our case, there are three governing



TABLE II: The gate equivalent and propagation delay of

standard logic gates.

Gate Gate Delay
Equivalent (ns)
NOT 1 0.0625
AND 2 0.209
OR 2 0.216
XOR 3 0.212
NAND 1 0.13
NOR 1 0.156
XNOR 3 0.211
WIRE 1 0.02

constraints (or objectives) viz., correctness in input/output
behavior, minimization of propagation delay, and minimization
of size of the evolved circuit. 3 for input/output behavior (3;)
is set to 0.5 and 3 for circuit size and propagation delay (/32
and f33) are set to 0.25 and 0.25, respectively.

Our first objective is the correctness in input/output be-
havior. In order to quantify the correctness in input/output
behavior, we incorporate the notion of reward function which
depends on the expected output and observed output of the
evolved circuit. A reward function R(O{"F, 0?*%) is defined
which counts the number of observed outputs that are equal
to the expected outputs. This count is considered as a reward
value. O;"" represents expected output of the circuit with Z;
as input and O9** represents the observed output of evolved
combinational circuit. The expected output is computed by
implementing point arithmetic algorithms (refer section III).
Z;, where, i € {1,2,...,|Z|}, represents the simulation inputs
which are the points on elliptic curve (refer Fig. 2). We
have used these simulation points to check the input/output
behavior of evolved combinational circuit. For point addition
and doubling, we used these points on the elliptic curve as
the inputs and the result is also a point in the curve. For,
scalar multiplication, a scalar value and a point from the curve
as a base point is taken as input and the output is a point
in the elliptic curve. As depicted in Fig. 2, the points in
the elliptic curve are divided into four rectangles. The 3-bit
evolved circuit can perform all point operations for all of the
points in rectangle A. 4-bit, 6-bit and 8-bit evolved circuits
work for points in rectangle B, C, and D, respectively. We
were able to generate a combinational circuit that can perform
all point operations for all of the points in elliptic curve over
prime field Zp.

Our second design objective is the minimization of the
size of evolved circuit. We estimate the necessary area for an
evolved circuit using the concept of gate equivalent [23] which
is a basic unit of measure for digital circuit complexity. This
measure is more accurate than the simple number of gates
concept. We formulate a function, G4, (g), to represent the
gate equivalent value of an evolved circuit where g € G¢"mo™
is an evolved combinational circuit. G°*"*™ represents the
population of all evolved circuits by the GA. Finally, our
third objective is the minimization of the propagation delay
of evolved circuit. The finite time that a circuit takes to
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Fig. 2: Points in elliptic curve over the prime field E[Za9)].

reflect the change in input in its output values is known as
propagation delay. Propagation delay is different for different
gates. We measure the propagation delay using the path having
highest delay called the worst-case delay path (or critical path).
D(g) represents the delay function in our fitness function.
To compute the critical delay path, we model the evolved
combinational circuit as a directed acyclic graph. The gate
equivalent values and propagation delay values that we used
for the gates in our evolved circuit are shown in Table II. The
following equation shows the fitness function which is used
to compute fitness of a chromosome. Here, "7 represents
the fitness of a chromosome, Ghrom represents set of evolved
circuits, and L p,om represents the length of the chromosome.

|Z|
]_-chrom _ 61 Z R(Oiea:p7 O;_)bs)
=1
1
+ B2 -
EQGGC’”‘O’” geqv (g)

1
Eleﬁchmm ,gEGchrom D(g)

Genetic Algorithm: We leveraged CHC adaptive search al-
gorithm as our GA with the parameters as listed in Table I.
CHC is an elitist algorithm that uses high value of probability
of crossover (Peross = 0.9) and no mutation. In the follow-
ing, we describe the working of our version of CHC GA.
Initially, a set of random individuals are taken as a starting
combinational circuit. These individuals are represented by a
data structure having chromosome and fitness of chromosome
as components. So, basically an individual is a chromosome
with certain fitness value. The initial set of individuals are
the parent population which is represented by GP. The parent
population size is set to 300.

The GA solution proceeds by generating a child population
(G°) from a parent population by using reproduction operator
called crossover operator. During crossover, GA selects two
random individuals from GP. These two individuals can per-
form crossover only if the hamming distance between these
two is greater than or equal to crossover threshold (Xyp,). This
is known as incest prevention in CHC GA. If these individuals

+ B3 -
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Fig. 3: Reconfigurable architecture of elliptic curve
cryptographic hardware core implemented in Kintex-7 FPGA.

comply with A}, requirement, then, half of the bits (from
random chromosome locations) that are different between two
parents are exchanged. This type of crossover is called half-
uniform crossover. However, if X}, is not fulfilled then Ay,
is decreased by 1 and another two random individuals are
selected for crossover. When the decreasing A}, hits zero
value, the CHC GA is restarted. The initial population for the
restarted GA will have p elite individuals (individuals with
best fitness value) from previous run of GA. The remaining
U — p individuals are generated by randomly flipping ~ bits
of the p elite individuals.

After the crossover operation, child population is generated.
In order to generate individuals for next generation, individuals
in both the child and parent population are merged into
single pool and are sorted based on highest fitness value. ¥
individuals from the sorted population with best fitness values
are selected as next generation parent population.

V. DYNAMIC PARTIAL RECONFIGURATION BASED
RECONFIGURABLE ECC HARDWARE DESIGN

We implement the ECC hardware core in Xilinx Kintex-
7 FPGA. The internal architecture of ECC hardware core is
shown in Fig. 3. The ECC core is a pure combinational logic
circuit. The basic components of ECC core are combinational
logic circuit modules for point addition, point doubling, and
point multiplication. These circuits are generated by our GA.
The ECC core logic is control unit of ECC hardware core.
The control logic is implemented based on finite state machine
(FSM) design principle.

The novel feature of our ECC hardware core is that the point
addition, point doubling, and point multiplication circuits can
be changed dynamically during system run-time as our GA can
generate multiple functionally correct circuits (represented by
V1 to V4 in Fig.3) for each of these operations. Therefore,

we can have multiple circuits (each of them are different
from another) for same point operation. The switching of
one circuit to another equivalent circuit is accomplished by
using dynamic partial reconfiguration (DPR) feature of Kintex-
7 FPGA [24]. The DPR of combinational circuits is controlled
by a reconfiguration manager. The reconfiguration manager
has a configuration memory that stores the bit-stream (or
circuit netlist) of all functionally equivalent combinational
circuits for a particular point operation.

Inside the reconfiguration manager, the configuration en-
gine is the main control unit. It reads a configuration of
a combinational circuit from the configuration memory and
uses internal configuration access port (ICAP) interface to
realize the combinational circuit in the FPGA logic fabric.
The configuration engine takes signal from ECC core logic
in order to decide which configuration from the configuration
memory to use at a particular time.

VI. RESULTS
A. Experimental Setup

Implementation of Genetic Algorithm: The genetic algo-
rithm code is written in C programming language. The code
is implemented on Intel CORE i7 processor running Ubuntu
14.04 LTS at 3.60 GHz.

Implementation of ECC Hardware Core: The hardware core
for ECC is implemented in Xilinx Kintex-7 FPGA KC705
Evaluation Kit. The implemented hardware modules include
evolved combinational circuits, controller circuits, and recon-
figuration manager circuit, and are coded in very high speed
integrated-circuit hardware descriptive language (VHDL). The
execution time and power consumption of the evolved circuits
and the ECC hardware core are obtained using the Xilinx ISE
14.7 [25] tool.

B. Evaluation Results

Evolved Combinational Circuit: Fig. 4 shows the 10 x 10
combinational logic circuit evolved using our GA. This com-
binational circuit performs point addition of two 3-bit points
in the elliptic curve. The index of the output of each gate is a
number from 0 to 9. The input ports of the gates on leftmost
side are connected to external inputs which are two 3-bit (x,y)
coordinate points in elliptic curve. The inputs to gates in the
inner levels are from the output of the gates in the preceding
level. As discussed in section IV, the combinational circuit has
N levels with M gates in each level. The outputs of M gates in
level 0 are connected to the inputs of M gates in level 1 and so
on. The output of the circuit is taken from the rightmost level
of M gates. The output is 3-bit (x,y) coordinate of a point in
the elliptic curve which is the sum of two input points.

Fig. 5 (a) depicts the trends of the three objectives of the
fitness function with respect to number of evaluations for
our GA to generate 10 x 10 combinational logic circuit. The
first objective is to maximize the correctness in input/output
behavior. Second and third objectives are to minimize the
propagation delay and circuit size. As depicted in Fig. 5 (a),
the correctness value increases with number of evaluations and
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5000

a=m8 Maximum fitness
++++ Correctness
B -#-e-s-¢ Propagation delay
- Circuit size

Fitness
3000

o
o
o L—’—o—o—o—o—o—~—o—o-.__
T T S T, o U L G W VY VY A G W W Y G VY S S S |
o 4
T T T T T T T
0 5000 10000 15000 20000 25000 30000

(a)

Number of Evaluations

max Fitness

5000

avg Fitness

Fitness
3000
|

8 | min Fitness
o
o
T T T T T T T
0 5000 10000 15000 20000 25000 30000
(b) Number of Evaluations

Fig. 5: (a) Correctness, propagation delay, circuit size, and maximum fitness value of evolved 10 x 10 combinational circuit
as a function of number of evaluations. (b) The maximum, average, and minimum fitness value achieved by our genetic
algorithm for 10 x 10 circuit configuration.

reaches a maximum attainable value at 23,119 evaluations.
Furthermore, the propagation delay and circuit size values in
the fitness function decrease with the number of evaluations.
However, when the number of evaluations crosses 15, 000, the
value of propagation delay and circuit size stop decreasing.
This is because the critical path (the longest delay path from
input to output) in the circuit stops changing and all of the
gates in the evolved combinational logic circuit are connected
into the critical path.

Fig. 5 (b) depicts the averages of maximum, average,
and minimum fitness values over 30 runs for our GA to
generate 10 x 10 combinational logic circuit. The maximum
fitness value increases steadily with the number of evaluations.
However, the average and minimum fitness value curves can
be divided into a number of segments separated by abrupt
high-to-low-to-high transitions. These transitions are because
of multiple GA restarts, a property of the CHC GA. When the
GA (re)starts, the average fitness increases towards the current
maximum fitness value. As the average fitness reaches the

current maximum fitness, the GA stops making progress. This
is marked by a decrease in the value of crossover threshold
(Xtn) in our GA. When the decreasing crossover threshold
X, hits zero, the GA is restarted thus resulting in the high-to-
low-to-high transitions in the value of average and minimum
fitness. At each segment, average fitness increases towards the
current maximum fitness value as shown in Fig. 5 (b).

We have written four GA versions with different parameter
settings to generate combinational circuits for 3,4, 6, and 8-
bit ECC. As shown in Table III, we have used 10 x 10,
10x 16, 20 10, and 20 x 16 circuit configurations (or chromo-
some configurations) for 3,4, 6, and 8-bit ECC, respectively.
Different circuit configurations have different chromosome
lengths and different maximum achievable fitness values as
shown in Table III. Results reveal that as the number of
bits required to represent the points in the elliptic curve
increases by one bit, the length of chromosome required to
represent the combinational logic circuit increases by 1.06x.
Hence, to design a combinational circuit for large set of points
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TABLE III: The circuit configuration, chromosome length
and maximum achievable fitness value depends on the
bit-length required to represent points in elliptic curve.

Bit-length Circuit Chromosome | Maximum
of point Configuration Length Fitness
3-bit 10x10 1020-bit 6142
4-bit 10x 16 1680-bit 21518
6-bit 20x10 2400-bit 30710
8-bit 20x16 3960-bit 51882

in elliptic curve, we need much larger chromosome length.
Consequently, the GA will run slow and will take much longer
time to generate a useful circuit. In order to solve this problem,
we have proposed to divide the points in the elliptic curve
into a number of sub-groups having a certain fixed number
of points as shown in Fig. 2. Then, for each sub-group,
we can design a combinational logic circuit. As discussed
in section V, we can use DPR feature of FPGA to switch
from one combinational logic circuit to another to operate on
different points on elliptic curve available in different sub-
groups.

Fig. 6 (a) pictures the curve for maximum fitness with
respect to number of evaluations for four different circuit
configurations. The plot shows that 10x10 and 10 x 16 circuit
configurations reach their maximum attainable fitness values
at 18,121 and 20,156 evaluations, respectively. However,
20 x 10 and 20 x 16 circuit configurations attain their max-
imum achievable fitness at 31,256 and 31,589 evaluations,
respectively, which is, on average, 1.64x slower than 10 x 10
and 10 x 16 circuit configurations convergence on maximum
achievable fitness. These results indicate that generating a
larger combinational circuit takes significantly longer time.
Although, smaller circuit converges faster than larger circuits,

the rate of progress in the value of maximum fitness is same
for all circuit configurations, which assures that any circuit
configuration can be realized by our GA.

Fig. 6 (b) illustrates the maximum, average, and minimum

fitness values obtained by our GA for four circuit configura-
tions. The bar graphs represent the average fitness value of the
GA and the lower and upper ends of the range-bars represent
the minimum and maximum fitness values. The fitness values
are averaged over 30 runs.
Propagation Delay and Side-Channel Analysis: Table IV
shows the values of propagation delay and circuit size of the
evolved 10 x 10 combinational logic circuit. We estimated the
size and the propagation delay of the evolved circuit using
the concept of gate equivalent [23] which is a basic unit
of measure for digital circuit complexity. The propagation
delay of the evolved circuits for point addition, and point
multiplication differs by 2.61%. For point addition and point
doubling, the difference in propagation delay is 0.25%. The
difference in propagation delay of these circuits is low enough,
and hence, simple timing analysis cannot reveal whether the
current elliptic curve point operation is addition, doubling, or
multiplication. Furthermore, the size of the evolved circuit for
point addition and point multiplication differs by 2.53%. The
difference in the size of point addition and point doubling is
1.71%. Moreover, all of the gates in the 10x 10 circuit for point
addition, point doubling, or point multiplication will always be
in the ON state during the operation. Hence, 10 x 10 circuits
for point addition, point doubling, and point multiplication
consumes comparable power and so cannot be distinguished
using simple power analysis attack.

Finally, the security strength of our ECC circuits relies on
the way we design these circuits using GA. The advantage of
using a GA is that it produces non-conventional combinational



TABLE IV: The propagation delay and size of the evolved
10 x 10 circuit. (refer Table II)

Point Arithmetic Propagation | Circuit
Delay (ns) Size¢
Point Addition 1.569 237
Point Multiplication 1.610 243
Point Doubling 1.565 233

“The unit of circuit size is gate equivalent.

logic circuits which are different from those designed using
standard cell-based integrated circuit design flow. As discussed
in section IV, power analysis attacks, such as, differential
power analysis and correlation power analysis are based on
hamming weight and hamming distance [13]. These attacks
are suitable for power analysis attacks on sequential logic
circuits (e.g., clocked registers and buses). However, neither
of these attacks are suitable for multi-input combinational
logic circuits. The only attack tailored for combinational logic
circuits is a power template attack proposed by [13]. In order to
mount this attack, the attacker needs to construct a power tem-
plate according to input transitions of the combinational logic
circuit under attack. Zheng et al. [13] were successfully able
to attack 5-bit input and 3-bit output S-box of PRINTcipher
(described earlier) which has only 2° x 25 = 1024 possible
input transitions. However, our elliptic curve cryptosystem will
have a 160-bit input which has 2160 x 2169 possible input
transitions. Hence, it is currently infeasible to account all of
these input transitions in building an effective power template
to mount template match attack for 160-bit combinational
logic circuit for ECC.

VII. CONCLUSION

In this paper, we have used a genetic algorithm (GA) to
design a combinational logic circuit for elliptic curve cryp-
tography (ECC). To start, we have used GA to design 3,4,6
and 8-bit ECC circuits on the path towards realizing full-sized
160-bit ECC circuits. The GA reliably designs combinational
logic circuits for 3,4, 6, and 8-bit point operations in elliptic
curve over the prime field Zp. In addition, we quantify the
propagation delays and sizes of the evolved circuits and show
the circuits designed by the GA are resistant to simple timing
and power analysis side-channel attacks. These results indi-
cate viability of the GA for designing side-channel resistant
functionally correct combinational logic circuits for ECC.
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