
1

Design and Analysis of Secure and Dependable
Automotive CPS: A Steer-by-Wire Case Study

Arslan Munir, Senior Member, IEEE, and Farinaz Koushanfar, Senior Member, IEEE

Abstract—The next generation of automobiles (also known as cybercars) will increasingly incorporate electronic control units (ECUs)
in novel automotive control applications. Recent work has demonstrated the vulnerability of modern car control systems to security
attacks that directly impacts the cybercar’s physical safety and dependability. In this paper, we provide an integrated approach for the
design of secure and dependable automotive cyber-physical systems (CPS) using a case study: a steer-by-wire (SBW) application over
controller area network (CAN). The challenge is to embed both security and dependability over CAN while ensuring that the real-time
constraints of the automotive CPS are not violated. Our approach enables early design feasibility analysis of automotive CPS by
embedding essential security primitives (i.e., confidentiality, integrity, and authentication) over CAN subject to the real-time constraints
imposed by the desired quality of service and behavioral reliability. Our method leverages multicore ECUs for providing fault tolerance
by redundant multi-threading (RMT) and also further enhances RMT for quick error detection and correction. We quantify the error
resilience of our approach and evaluate the interplay of performance, fault tolerance, security, and scalability for our SBW case study.

✦

Index Terms—Automotive, cyber-physical systems, multicore, security,
fault tolerance, controller area network, behavioral reliability, x-by-wire,
steer-by-wire

1 INTRODUCTION AND MOTIVATION

MODERN automobiles may consist of more than 100
electronic control units (ECUs) to implement various

distributed control applications. The next generation
of automobiles (also known as cybercars) will further
escalate the proliferation of ECUs to enable new and
exciting control and infotainment applications. The most
prevalent protocol for communication among the ECUs in
these distributed automotive cyber-physical systems (CPS)
applications is controller area network (CAN), which has
already been implemented in billions of devices and long-
lived transportation systems, and thus likely to stay for
many years to come. Emerging automotive CPS applications
include x-by-wire, for example, break-by-wire, steer-by-
wire (SBW), where the electronic controllers substitute the
traditional mechanical and/or hydraulic systems.

The realization of emerging automotive CPS applications
require addressing dependability and security issues. The
automotive CPS applications have stringent dependability
requirements as stipulated by ISO 26262 [1], which
require tolerance of at least one critical fault without
loss of functionality [2]. Meeting these automotive CPS
dependability requirements poses various challenges.
The miniaturization of electronic devices results in a
significant increase in manufacturing variability and
runtime errors creating dependability issues. Harsh
operating environments coupled with external noise and
radiation render automotive electronic systems vulnerable

• Arslan Munir is with the Department of Computer Science, Kansas State
University, Manhattan, Kansas, USA. Farinaz Koushanfar is with the De-
partment of Electrical and Computer Engineering, University of Califor-
nia, San Diego, USA. e-mail: {amunir@ksu.edu, fkoushanfar@ucsd.edu}

to permanent, transient, and intermittent faults. While
permanent faults can impair or stop the correct functionality
of the system, soft errors induced by transient faults can
remarkably reduce the system availability and correct
functionality [3]. The intermittent faults, on the other hand,
oscillate between quiescent and active states. When the fault
is quiescent, the component functions correctly, and when
the fault is active, the component malfunctions. An example
for an intermittent fault is a loose electrical connection
[3]. Furthermore, automotive electronic components are
susceptible to security vulnerabilities. Since CAN messages
are transmitted in plain-text format, intruders may be able
to gain access and even alter the CAN messages creating
security threats. These security threats are exacerbated
by the increasing integration of cybercar applications
with external entities such as consumer electronics, other
vehicles, and networks.

The cyber-physical attributes of modern automotive
systems [4] directly couple security vulnerabilities to the
automobile’s physical safety and dependability: an attacker
who is able to infiltrate any ECU can potentially circumvent
many safety-critical systems while completely ignoring
the driver input [5]. Simultaneous integration of security
and dependability in automotive CPS is challenging. One
of the biggest challenge in the simultaneous integration
of security and safety is to avoid violation of the
automotive CPS application’s hard real-time constraints.
Timeliness (meeting timing constraints) is perceived as
the system’s quality of service (QoS), and is commonly
considered a performance measure. We emphasize that
the automotive CPS application’s QoS must also be
considered as a dependability measure that can impact
the system’s availability and safety, beyond a certain
critical threshold as the driver can totally lose the control
of his/her car beyond that critical threshold [6]. This
temporal performance impact on safety introduces the
notion of behavioral reliability, which is defined as the
probability that the system’s worst-case response time is less

2

than the critical threshold [6]. Limited resources (memory,
processing), limited bandwidth, cost, and flexibility (ability
of a solution to adapt to different performance, cost,
and fault tolerance (FT) requirements) constraints further
exacerbates the challenges to accommodate security and
dependability in automotive CPS design.

The security vulnerabilities and dependability
requirements of automotive CPS warrant inclusion of
security and dependability approaches in the design.
Although earlier work in this area has addressed certain
aspects of security and dependability (e.g., [6], [7]),
the interplay between performance, security, and safety
for SBW applications using CAN has not yet been
explored. To overcome the limitations of earlier work,
we provide a new comprehensive approach to the design
and analysis of secure and dependable automotive CPS
with SBW application as a case study. Our main technical
contributions are as follows:

• We propose a novel integrated approach that enables
early design phase feasibility and performance
analysis for devising secure and dependable
automotive CPS. The approach is demonstrated on
a SBW application case study.

• Embedding and analyzing security primitives
over CAN while adhering to the stringent real-
time constraints for safety-critical automotive
CPS applications. Our approach uses advanced
encryption standard (AES) for providing
message confidentiality and hash-based message
authentication code (HMAC) for ensuring message
authenticity and integrity.

• Proposal to include multicore ECUs (dual-core and
triple-core ECUs instead of conventional single-
core ECUs) to meet the FT requirements (tolerating
one permanent fault, multiple soft-errors, and
intermittent faults) under stringent cost and real-time
constraints by redundant multi-threading (RMT). We
denote this approach as FT-RMT. We further enhance
RMT by exploiting quick error detection (QED) [8],
and denote this approach as FT-RMT-QED.

• Extension of the FT-RMT-QED on a triple modular
redundant (TMR) architecture to enable quick error
detection and correction (QEDC). We denote this
enhanced FT approach as FT-RMT-TMR-QED).1

• Quantification of error resilience of our proposed FT
approaches by calculating the number of tolerable
computational and transmission errors that are
manifested as response time variations under the
stringent QoS constraints.

• Analyzing the scaling properties of our secure and
dependable approach for automotive CPS design
using SBW system as a case study for different
CAN bus load conditions and message priority
assignments.

The scope of this work is to ensure that simultaneous
integration of security and dependability primitives in
automotive CPS does not violate stringent real-time

1. Fig. 1 depicts our proposed dependable and secure approach and
also rementions all the relevant acronyms for reference.

constraints imposed by the desired QoS. Although
our proposed approach leverages existing security and
dependability techniques, the novelty of our work lies
in the simultaneously integration of both dependability
and security, and the performance and feasibility analysis
of our integrated approach over CAN. The evaluation
metric for our feasibility analysis is response time, which
is constrained by the desired QoS. The remainder of this
paper is organized as follows. Section 2 provides a summary
of related work. Section 3 presents our proposed secure
and dependable approach for cybercars design. Section 4
elaborates our SBW system case study in relation to QoS
and behavioral reliability. Evaluation results are presented
in Section 5. Finally, Section 6 concludes our study.

2 RELATED WORK

There exists works in literature that address certain
aspects of automotive security and dependability. This
section discusses key previous works related to security,
dependability, and analysis of automotive x-by-wire
systems.

2.1 Dependability

Several earlier works explored dependability for automotive
embedded systems. Beckschulze et al. [9] investigated FT
approaches based on dual-core microcontrollers. Baleani et
al. [10] discussed various FT architectures for automotive
applications including lock-step dual processor architecture,
loosely-synchronized dual processor architecture, and triple
modular redundant architecture. Although, the work
compared various FT architectures’ costs based on the area
estimates, the study did not quantify the architectures’ FT
capabilities subject to real-time constraints. Rebaudengo
et al. [11] studied soft-error detection through software-
based FT techniques. The authors described an approach
to detect soft-errors by automatically introducing data and
code redundancy into an existing program written in a high-
level language. The proposed approach, however, incurred
an average performance penalty of 5×, which may not be
acceptable for automotive CPS.

Some previous work explored dependability
benchmarking for automotive systems. Ruiz et al. [12]
proposed a dependability benchmark for engine control
applications. The authors compared the system behavior
in the absence of faults (golden run) with the system
behavior in the presence of faults. Although dependability
benchmarks quantify an application’s dependability, the
benchmarks do not enhance the application’s FT. Hence,
the use of dependability benchmarks to assess system
dependability is complementary to our work whose focus
is to provide FT.

2.2 Security

Security for automotive embedded systems has been
studied in literature. Checkoway et al. [13] analyzed
the external attack surface of a modern automobile. The
authors discovered that remote exploitation is possible
via a broad range of attack vectors such as mechanics
tools, CD players, bluetooth, and cellular radio. Hoppe
et al. [14] explored security and privacy issues in future

3

automotive systems. The authors presented an attack on a
gateway ECU (the gateway ECU is an ECU that connects
various automotive subnetworks, such as powertrain, body,
and chassis) that enabled an attacker to sniff internal
communication even beyond subnetwork borders. Rouf et
al. [15] investigated security and privacy vulnerabilities
of modern automotive systems with wireless tire pressure
monitoring system (TPMS) as a case study. Results indicated
that eavesdropping was possible at a distance of around 40
meters from a passing vehicle exploiting TPMS messages.
These previous works identified security vulnerabilities in
automotive systems, but did not present an integrated
approach for designing secure and dependable automotive
systems.

Chávez et al. [7] incorporated confidentiality service
in CAN based on RC4. The authors measured the clock
cycles required for encrypting different CAN frame data
sizes. However, the authors did not consider FT aspects
or CAN message priorities while analyzing the security
over CAN. Groll et al. [16] studied authenticity and
confidentiality issues in CAN for safety-critical applications.
Results revealed that asymmetric cryptography, owing to
excessive time overhead, could only be feasible for initial
key distribution process whereas symmetric cryptography
could enable secure communication between CAN nodes.

Various prior works [17], [18], [19] studied integration
of message authentication codes (MACs) in CAN data
frames to secure in-vehicle communication. In [17], the
authors used a compound MAC added to the CAN
payload which could be used to detect and possibly recover
from injection and modification attacks in the in-vehicle
networks. The proposed scheme calculated MAC over
four consecutive CAN messages and the resulting MAC
was divided into four 16-bit blocks and transmitted in
the cyclic redundancy code (CRC) field of the next four
CAN messages. The protocol required a total of eight
CAN messages for verification, which introduced a delay
in the data integrity and data authentication verification.
Furthermore, the scheme did not provide any protection
against reply attack and in case of MAC verification failure,
the incorrect message could not be identified individually.

The work in [18], [19] proposed CAN security
mechanisms based on MACs and counters that could
prevent both masquerade and replay attacks. Kang et al.
[20] proposed an authentication protocol for ECUs based on
one-way hash chain. To mitigate the hash collision problem,
the proposed work used an attack-resilient tree structured
algorithm in the authentication protocol. However, these
works did not consider message confidentiality and FT.

Our prior work [21] was the first, to the best
of our knowledge, to propose simultaneous integration
of security primitives (confidentiality, integrity, and
authentication) using AES-128 and SHA-2-based HMAC as
well as dependability primitives leveraging multicore ECUs.
Furthermore, our prior work demonstrated the feasibility of
the proposed approach by implementation on a multicore
processor and Vector CANoe simulations. Later on, Wu
et al. [22] proposed a security protocol for CAN system
based on AES-128 encryption and HMAC function. The
proposed protocol further compressed CAN messages with
an encryption algorithm. Experimental results obtained

using Vector CANoe demonstrated the feasibility of the
proposed approach. However, the work did not elaborate
on the HMAC algorithm being used by the approach nor
presented any analytical model on QoS and behavioral
reliability. Additionally, the implementation of the proposed
approach on a real processor was missing in the work.
Moreover, the work did not consider FT of messages during
computation and transmission.

In order to overcome the deficiencies of existing work
on automotive security and dependability, this work builds
on our prior work [21] and makes significant enhancements
on concepts, modeling, experimental results and analysis
as outlined in Section 1. In particular, this work proposes
a TMR architecture to enable QEDC, includes enhanced
analytical modeling of our proposed approach, QoS, and
behavioral reliability, and extended experimental results
and analysis.

2.3 Analysis of X-by-Wire Systems

Few previous works investigated automotive x-by-wire
systems. Fredriksson [23] advocated the use of CAN
for safety-critical systems including x-by-wire. The work,
however, did not present any case study or evaluation
results for verifying the feasibility of x-by-wire systems over
CAN. Schweppe et al. [24] studied an active braking system
for automobiles assisted by vehicle-2-X communication.
The active braking system deduced brake recommendations
based on relative position, speed, and acceleration of the
vehicles. The authors proposed a hardware security module
(HSM) for hardware acceleration of signature generation
and verification for vehicle-2-X communication. Although
the work compared the performance of the HSM building
blocks for automotive systems in pure software and
hardware accelerated versions, the work did not consider
the interplay between performance, security, FT, message
priorities, and scalability. Ringler et al. [25] studied a brake-
by-wire system over a time-triggered protocol in which all
the activities were initiated with reference to a globally
synchronized time. The work, however, did not consider
security issues of the brake-by-wire system nor the work
evaluated the end-to-end response time.

Wilwert et al. [6] presented an approach for evaluating
the temporal performance and behavioral reliability of an
SBW system considering the delay variation introduced
by network transmission errors. The authors evaluated the
maximum tolerable system response time and the impact of
this response time on an automotive system’s QoS for a time
division multiplex access (TDMA) communication protocol.
However, the work considered only communication errors
on the bus and not the computational errors in ECUs.
Furthermore, the authors did not consider the system
vulnerability to security attacks. In our work, we also
consider security overhead while analyzing the system
response time. Moreover, the previous works did not
analyze the scalability aspects whereas our work analyzes
the SBW system response time under different load
conditions and message priority assignments.

Statistical methods for analyzing CAN message response
times have been studied in literature. Zeng et al. [26]
computed the probability distribution of CAN message
response times using statistical analysis when only partial

4

information about the functionality and architecture of
a vehicle was available. Although the statistical model
could predict CAN message response times, however, many
parameters required by the model, such as queueing lengths
and the time between consecutive higher priority message
bursts, are difficult to determine. Results indicated that
the response time estimation quality of statistical models
for high-priority messages was in general worse than the
low-priority messages. The limitation of statistical methods
for high-priority messages motivated us for rigorous
simulations of SBW systems to provide better response time
estimates than the statistical methods.

3 A SECURE AND DEPENDABLE APPROACH FOR

AUTOMOTIVE CPS DESIGN

The design of secure and dependable automotive CPS
is challenging because of limited resource budgets (e.g.,
memory and processing, bandwidth, cost) and real-time
constraints [27]. In particular, the inclusion of dependability
and security primitives, and protocols must not violate the
real-time constraints. The scope of our approach is confined
to error detection and correction for dependability, and
to provide confidentiality, integrity, and authentication for
security. Fig. 1 provides an overview of our dependable
and secure approach for automotive CPS design. The figure
shows the operations involved at both the sending and
receiving CAN nodes to ensure dependability and security.
This section elaborates the dependability and security
primitives adopted in our approach.

3.1 Dependability

To assist the design and production of safe automotive
systems, International Organization for Standardization
(ISO) has developed a functional safety standard, viz.,
ISO 26262 [1]. Many of the current automotive systems
consist of single-core ECUs that have difficulty meeting both
performance and dependability requirements of automotive
CPS simultaneously as well as present challenges running
both safety-critical and non-safety-critical software on the
same ECU without interference. To exploit the technological
advancements in silicon and accompanied low-cost of
single-chip solutions, our approach leverages multicore
ECUs to provide FT. Our approach is applicable to both
dual-core and triple-core ECUs. We note that our multicore-
based FT approach does not provide resilience against
common mode failures or single point of failure (e.g.,
a power supply failure), however, these common mode
failures can be compensated by having redundant or backup
modules (e.g., a backup power supply). We consider RMT-
based FT because the approach does not incur high cost
required in other custom hardware-based FT approaches,
such as lock-step FT architectures, albeit at the expense
of some increased code size and reduced performance.
We consider generic dual-core/triple-core architectures that
meet the low cost as well as flexibility requirements since
the architectures can adapt to various performance and
FT requirements for an application (the dependability
approaches based on specific hardware architectures, such
as lock-step processor architectures, offer limited flexibility).
Our approach utilizing dual-core ECUs is suitable for

applications with stringent cost constraints whereas triple-
core ECUs are more befitting for applications with relatively
less stringent cost constraints.

For dual-core ECUs, the FT configuration can be
either FT-RMT or FT-RMT-QED. The FT-RMT executes
safety-critical computations on redundant threads and
detects an error at the end of computation if there is a
mismatch between the two threads’ output. The FT-RMT-
QED enhances FT-RMT with QED [8]. In the FT-RMT-
QED, the main thread executes original instructions and the
check instructions, which are inserted at different points in
the program/computation, whereas another thread executes
duplicated instructions. Error detection latencies in the
FT-RMT-QED approach are configurable and can range
from a few cycles to a few thousand cycles depending
on the desired tradeoff between error detection latency
and complexity (i.e., additional software modifications to
incorporate QED checks).

Our FT approach on dual-core ECUs can detect one
permanent fault, and tolerate multiple soft-errors and
intermittent faults. Multiple soft-errors and/or intermittent
faults are tolerated as our approach recomputes the result
on any soft-error and/or intermittent fault detection at
any point in the program, and repeats this recomputation
process till an error-free result is obtained. Our approach
distinguishes permanent faults from transient faults by
setting a threshold on the number of recomputations: if an
error is not recovered by the recomputation threshold, the
error is designated as a permanent fault, and then acceptance
tests are utilized to select the result from the correctly
functioning core. The recomputation threshold value is set
based on the real-time constraints and the available slack
time. The slack time is determined from the difference
between the real-time deadline and the worst-case execution
time. Section 4.2 elaborates further on meeting real-time
deadlines in the presence of recomputations to recover
from transient faults. We note that both permanent and
intermittent faults can be eliminated by vehicle service
and repair, however, our proposed approach provides
resilience against these faults while driving on-road where
instantaneous vehicle service and repair are not feasible. A
major advantage of both the FT-RMT and the FT-RMT-QED
approaches is that the methods are self-checking, i.e., they
do not require a separate golden response created through
simulation.

Our FT approach utilizing dual-core ECUs essentially
detects errors whereas error correction is enabled by
recomputations. To permit single error (permanent or
transient) detection as well as correction on-the-fly without
recomputations, we extend our FT approach to utilize
triple-core ECUs that can be configured as either FT-RMT-
TMR or FT-RMT-TMR-QED. The FT-RMT-TMR executes the
computations on three redundant threads and the correct
output is determined by majority voting of the threads’
outputs. The FT-RMT-TMR-QED inserts check instructions
at different points in the program/computation to enable
early detection of errors via majority voting. The FT-RMT-
TMR-QED copies the correct output, which is determined
by majority voting, to an additional buffer. Then, the output
of the faulty thread is replaced by the correct output so
that the approach can provide single error detection and

5

M: Message

HMAC: Hash-Based Message
 Authentication Code

SHA-2-based HMAC
[HMACS(M)]

AES
Encryption

AES Block 3 AES Block 2 AES Block 1

Message M Message M

AES
Decryption

Message M

Formatting of
M & HMAC

HMACS(M)

SHA-2-based HMAC
[HMACR(M)]

Comparator

M's Integrity
confirmed

M has lost
Integrity

CAN: Controller Area Network

SHA-2: Secure Hash Algorithm-2

AES: Advanced Encryption Standard

ECU: Electronic Control Unit

HW: Hand Wheel

FAA: Front Axle Actuator

FT-RMT: Fault-Tolerance by RMT

FT-RMT-QED: Fault-Tolerance by
 RMT with QED

FT-RMT/FT-RMT-QED/
FT-RMT-TMR/

FT-RMT-TMR-QED

Dual-Core/Triple-Core ECU

Sending CAN Node

Receiving CAN Node

256 bits

≠=

CAN Bus

FT-RMT-TMR: Fault-Tolerance by
 RMT on TMR

FT-RMT-TMR-QED: Fault-Tolerance by
 RMT on TMR with QED

RMT: Redundant Multi-Threading

TMR: Triple Modular Redundant Architecture

QED: Quick Error Detection

FT-RMT/FT-RMT-QED/
FT-RMT-TMR/

FT-RMT-TMR-QED

Dual-Core/Triple-Core ECU

Fig. 1: A dependable and secure approach for automotive CPS design.

correction for the remaining computation as well. Hence,
by using additional comparison and copy instructions, the
FT-RMT-TMR-QED can detect and correct multiple single
errors at different points in the program (the number of
errors tolerated depends upon the granularity of check
instructions) albeit at the expense of additional performance
overhead.

3.2 Security Threat Model

In order to better elucidate our security approach,
we characterize the likely capabilities of an adversary
aiming to infiltrate an automobile’s internal networks
(e.g., CAN, FlexRay). Modern automobiles provide several
physical interfaces, such as on-board diagnostics (OBD-
II) port (typically located under the car’s dashboard) and
entertainment systems (e.g., CD, USB, iPod), that directly
provide access to an automobile’s internal networks. An
adversary can also connect to an automobile’s internal
networks indirectly via short range wireless access (e.g.,
bluetooth, remote keyless entry, wireless tire pressure
sensors) or long range wireless access (e.g., telematics
systems, such as General Motor’s OnStar, and broadcast
channels, such as global positioning systems, satellite
radio, digital radio) [13]. Hence, in order to ensure the
safety, security, and privacy of vehicles and passengers,
security primitives, in particular, confidentiality, integrity,
and authentication, needs to be integrated in in-vehicle
networks. Assuming that an adversary has gained access
to an automobile’s internal networks either directly or
indirectly, this section summarizes briefly the associated
security threat model against which our proposed approach
provides resilience.

Threat 1—Passive Eavesdropping & Traffic Analysis →

Need for Confidentiality: Modern automotive in-vehicle
networks carry a mix of operational and personally
identifiable information, such as current location, previous
destinations, navigation history, call history, microphone
recordings, and financial transactions, etc. An adversary
invading an in-vehicle network could perform passive
eavesdropping (i.e., sniff and store all the traffic in an
automobile’s internal network) and traffic analysis, thus,
obtaining critical information about the driver and the
vehicle. In addition, for the x-by-wire systems, if an
adversary knows the initial location of the vehicle, then,

by eavesdropping and traffic analysis of the steering angle,
accelerator, and braking values, the adversary could track
the car which might put the driver and passengers at risk.
Even for encrypted messages, it is important to consider
whether an adversary could obtain partial or complete
information from the messages. Additionally, an adversary
can have the capability to request generation of encrypted
messages. Recorded packets and/or knowledge of the plain-
text can be leveraged to reveal the encryption key, decrypt
complete packets, or gather other useful information
through traffic analysis. Hence, the confidentiality of
messages and data over in-vehicle networks is critical for
operational security, privacy, and consumer trust.

Threat 2—Active Eavesdropping & Message Injection →

Need for authentication and integrity: An attacker may
perform spoofing attacks by actively injecting and/or
modifying messages in the in-vehicle network. For example,
an adversary may attach his/her own device or compromise
a valid user device (e.g., a cell phone attached to the
infotainment system) in order to send fraudulent (or
malicious) requests (commands, codes, or messages) into
the system. Similarly, an adversary might inject malicious
messages by encoding the messages on a CD as a song
file and convincing the user to play the CD using social
engineering. The adversary can also insert a replayed
packet if there is no replay protection or the adversary
can circumvent the replay protection. By inserting some
well targeted messages, the adversary might be able to
gain more information from the system reaction through
active eavesdropping. Furthermore, the attacker’s device
may impersonate a valid ECU or gateway for malicious
activities that may jeopardize safety of the driver and the
vehicle. Thus, entity authentication and message integrity
verification are required in in-vehicle networks to defend
against these vulnerabilities.

Threats 1 and 2 are possible in the absence or possible
breaking of data confidentiality and integrity in in-vehicle
networks. These threats put the safety, security, and privacy
of driver and passengers of the vehicle at serious risk. These
threats expose the automobile to severe vulnerabilities as
the adversary can potentially control many safety-critical
systems (e.g., brakes, engine, lights, locks) while completely
ignoring the driver input [5]. We reemphasize that the
basic CAN protocol does not incorporate any security

6

primitives to countermeasure the above mentioned threats.
Some recent works in literature have proposed protocols for
integrating security primitives over CAN, however, most
of the proposed protocols either provide authentication
and integrity or confidentiality but not confidentiality,
integrity, and authentication simultaneously. Furthermore,
the proposed works do not consider FT aspects nor the
feasibility of simultaneously integration of security and
dependability primitives in terms of adhering to real-time
constraints of automotive distributed control functions.

3.3 Security

To countermeasure the threats presented in Section 3.2,
our approach (Fig. 1) provides confidentiality, integrity,
and authentication for automotive CPS with CAN as the
vehicular network. To minimize the encryption overhead
while providing adequate security for CAN message
lifetimes, we leverage AES-128 (128-bit) encryption to
provide confidentiality and an HMAC based on SHA-
2/SHA-256 (Secure Hash Algorithm-2) to render integrity
and authenticity [28]. Fig. 1 shows the operation of our
approach at both the sending and receiving CAN nodes
using generic dual-core/triple-core architectures. The figure
shows that the sending CAN node consists of an SHA-
2-based HMAC module and an AES encryption module.
The SHA-2-based HMAC module implements SHA-256
algorithm that takes the message M as input and outputs
256 bits, which is known as the message digest. The
256-bit HMAC HMACS(M) and the message M are
given as input to the AES encryption module, which
encrypts the message and HMACS(M). Our approach
assumes that initial AES and HMAC keys are stored in
secure tamper resistant memories of participating ECUs
by original equipment manufacturers (OEMs). Furthermore,
to provide key freshness, the AES and HMAC keys
are updated/refereshed deterministically over time by
participating ECUs as is done in the transport layer security
(TLS) [29]. Whenever car engine starts, one of the ECUs
(designated by OEM) in each safety-critical functional
domain broadcasts a nonce and AES and HMAC keys
are updated deterministically based on that nonce for
remainder of the encrypted messages on the CAN bus. This
continuous refreshing of AES and HMAC keys prevents
replay attacks. Our approach for providing confidentiality,
integrity, and authentication is inspired by the secure
sockets layer (SSL) [29]. In our approach, confidentiality,
integrity, and authentication can be added to a message M

as

OM,S = calc [HMACS(M)]

+ Encrypt
AES

[M +HMACS(M)] (1)

where calc() denotes calculation of HMACS(M) of the
message M by the sending node S, and OM,S denotes
operations at the sending CAN node S that include
encryption of the message M and the HMACS(M) using
AES algorithm.

To determine the storage bits required for the OM,S

operation, let us consider an 8-byte CAN message. Hence,
M +HMAC(M) = 64 + 256 bits = 320 bits. The encryption
of these 320 bits require three 128-bit AES blocks. The first

two AES blocks encrypt the first 256 bits whereas the third
AES block encrypts the remaining 64 bits padded by a 1
bit followed by 0 bits to make the block length of 128 bits
(padding in hexadecimal looks like 0x80,0x00,. . .,0x00) [28].
The transfer of 384 bits (3 AES blocks) of the encrypted
message requires 384/64 = 6 CAN message frames. Hence,
an unencrypted 8-byte CAN message requires six 8-
byte CAN messages on encryption. We point out that
public key cryptography can be used to exchange and
update symmetric keys (both for AES and HMAC) at
regular intervals for enhanced security, however, this key
establishment process is not the focus of our current work.

Eq. (1) summarizes the operations at the sending
CAN node, however, additional comparison and copy
instructions are required to implement our FT approaches.
For instance, the FT-RMT-QED requires comparison
instructions to compare the threads’ output for error
detection. Similarly, the majority voting on threads’
outputs, in case of FT-RMT-TMR-QED, requires additional
comparison instructions as compared to the FT-RMT-QED.
Moreover, error correction for FT-RMT-TMR-QED approach
requires copying the correct output determined by majority
voting to an additional buffer, and then copying the correct
output to the faulty thread’s output to reinstate single
error detection and correction capability for the remaining
computation. The operations at the sending CAN node for
the FT-RMT-TMR-QED can be given as

OFT−RMT−TMR−QED
M,S = calc∀i=1,2,3

[

HMACTi

S (M)
]

+ copy
[

HMACc
S(M),V i=1,2,3

mj

{

HMACTi

S (M)
}

]

+ copy
[

HMAC
Tf

S (M), HMACc
S(M)

]

+ Encrypt∀j=1,2,3
AES blockj

[

M +HMAC
Ti ∀ i=1,2,3
S (M)

]

+ copy∀j=1,2,3
[

AES blockc
j ,V

i=1,2,3
mj

{

AES blockTi

j

}

]

+ copy∀j=1,2,3
[

AES block
Tf

j ,AES blockc
j

]

(2)

where Vmj denotes the majority voting operation,
HMACc

S(M) denotes the correct HMAC output
determined by majority voting on the threads’ outputs,
HMACTi

S (M) denotes the HMAC calculated by the thread

Ti ∀ i = 1, 2, 3 at the sending CAN node, HMAC
Tf

S (M)
denotes the faulty HMAC output from the thread Tf

(f ∈ {1, 2, 3}) determined by majority voting comparisons,
AES blockc

j denotes the correct encryption of AES block j

determined by majority voting, and AES block
Tf

j denotes
the faulty AES encryption of block j from thread Tf

determined by majority voting. Similar equations can be
written for the operations at the sending CAN node for
FT-RMT, FT-RMT-QED, and FT-RMT-TMR.

Fig. 1 shows that the receiving CAN node consists of
the following modules: AES decryption module, formatting
module, SHA-2-based HMAC module, and a comparator
module. The AES decryption module decrypts the received
CAN frames. The formatting module operates on the
decrypted CAN frames to retrieve the message M and
HMACS(M). The SHA-2-based HMAC module calculates
the HMAC of the received message HMACR(M). To verify
the integrity and authenticity of the received message, the

7

comparator module at the receiving CAN node compares
HMACS(M) with HMACR(M). If HMACS(M) is equal
to HMACR(M), then the received message is authentic
otherwise the message has lost its integrity. The operations
at the receiving CAN node can be summarized as

OM,R = DecryptAES [M +HMACS(M)]

+ format [M +HMACS(M)] +HMACR(M)

+ comp [HMACS , HMACR] (3)

where OM,R denotes the message decryption along with
the associated operations performed at the receiving CAN
node to verify the received message’s integrity. The function
format() denotes the formatting/extraction of message M
and HMACS(M) from the received CAN frames, and the
function comp() denotes the comparison of HMACS(M)
with HMACR(M).

The actual implementation of our FT approaches at
the receiving CAN node requires additional comparison
and copy instructions. For instance, the operations at the
receiving CAN node for FT-RMT-TMR-QED can be given as

OFT−RMT−TMR−QED
M,R =

Decrypt∀j=1,2,3
AES blockj

[

M +HMAC
Ti ∀ i=1,2,3
S (M)

]

+ copy∀j=1,2,3
[

AES blockc
j ,V

i=1,2,3
mj

{

AES blockTi

j

}

]

+ copy∀j=1,2,3
[

AES block
Tf

j ,AES blockc
j

]

+ formati=1,2,3
[

M +HMACTi

S (M)
]

+ calc∀i=1,2,3
[

HMACTi

R (M)
]

+ copy
[

HMACc
R(M),V i=1,2,3

mj

{

HMACTi

R (M)
}

]

+ comp [HMACS(M), HMACc
R(M)] (4)

Similar equations can be written for the operations at the
receiving CAN node for FT-RMT, FT-RMT-QED, and FT-
RMT-TMR.

Our security approach provides resilience against the
security threat model described in Section 3.2. We clarify
that our approach provides security for all the CAN frame
fields (e.g., data field, control field) except for the channel
arbitration field and the start and end of frame bits as
the leakage of these arbitration fields is not considered
harmful in most scenarios. It is reasonable to believe
that once security primitives (confidentiality, integrity,
and authentication) are implemented using our approach,
the adversary cannot break the message confidentiality
and integrity without knowing the secret key (please
refer to Section 5.1 for cryptanalysis). Furthermore, an
adversary cannot obtain useful information about the key
via analyzing the ciphertext even if the corresponding
plaintext is known. With reference to the threat 1, an
adversary may eavesdrop on the vehicular network traffic
but the adversary cannot decrypt the packets without
knowing the secret key. Our approach completely eliminates
the threat 2 because SHA-2-based HMAC not only prevents
insertion of forged messages but also prohibits message
modifications. Refreshing of AES and HMAC keys over time
by ECUs in our approach prevents replay attacks.

3.4 Advantages of the Proposed Approach

Other than the simultaneous integration of security and
dependability primitives, our proposed approach offers
additional benefits including cost-effectiveness, flexibility,
performance, and energy efficiency. Since automotive domain
has stringent cost constraints, our proposed multicore-
based approach provides a cost-effective way to incorporate
security and dependability primitives as a single multicore
ECU can implement the functionality of multiple single-
core ECUs. This potential reduction in the number of
single-core ECUs and the associated wiring harnesses
results in cost efficiency. Furthermore, the proposed
multicore-based approach offers a cost-effective and flexible
approach as compared to the dependability and security
approaches based on specific hardware architectures,
such as lock-step dual processor architecture, Secure
Hardware Extension (SHE) [30]. In particular, since new
vulnerabilities and corresponding countermeasures are
continuously discovered, our multicore-based solution
provides the flexibility of relatively easy upgrade to
newer security and dependability protocols. Moreover, the
contemporary dedicated solutions provide either security or
dependability but not the two simultaneously. Furthermore,
the additional computing power furnished by multicore
ECUs makes them a suitable platform for implementing
real-time constrained compute-intensive tasks of modern
cars (including autonomous vehicles), such as audio, video,
image processing, and machine learning algorithms (e.g.,
for autonomous driving). The multiple cores in multicore
ECUs impart enhanced performance through parallelism,
and thus permit running the cores at a lower clock
frequency than single-core ECUs, which results in reduced
energy consumption. Additionally, the potential reduction
in the number of single-core ECUs and associated wiring
harnesses, and conversion from mechanical/hydraulic
systems to electronic ones reduce the vehicle weight, and
thus fuel/energy consumption.

4 STEER-BY-WIRE SYSTEM
An SBW system replaces mechanical steering system
with ECUs, sensors, and actuators, which interact via
a communication bus, such as CAN or FlexRay. An
SBW system provides various advantages over mechanical
steering systems that motivate the adoption of x-by-wire
systems for future automobiles. An SBW system eliminates
the risk of steering column entering the cockpit in the
event of a frontal crash. Since steering column is one of the
heaviest components in the vehicle, removing the steering
column reduces the weight of the vehicle and therefore
reduces fuel consumption. An SBW system enhances driver
comfort by providing a variable steering ratio, that is,
the steering ratio between the handwheel and the road
wheels can be adapted according to the driving conditions
(e.g., smaller steering ratio in parking and urban driving
as compared to the driving on freeways). This section
elaborates our SBW system that leverages multicore ECUs
to incorporate dependability and security primitives.

4.1 Steer-by-Wire Operational Architecture

Fig. 2 depicts the SBW architecture that we consider for our
case study. The architecture provides FT by redundancy at

8

HW ECU1

HW

Motor 1

HW

Motor 2
hws1 hws2 hws3

HW ECU2

FAA ECU1 FAA ECU2

FAA

Motor 1

FAA

Motor 2
fas1 fas2 fas3

Hand Wheel

(HW)

HW Sensors

Front Axle Sensors

ECU: Electronic Control

 Unit (Dual-Core)

FAA: Front Axle Actuator

Point-to-Point Link

CAN Bus

Fig. 2: Steer-by-wire operational architecture.

ECU-level, sensor-level, and actuator level. The architecture
consists of two multicore hand wheel ECUs (HW ECU1
and HW ECU2) and two multicore front axle actuator
ECUs (FAA ECU1 and FAA ECU2). The multicore ECUs
(HW ECU1, HW ECU2, FAA ECU1, and FAA ECU2)
for the SBW system can implement either of our FT
approaches (FT-RMT, FT-RMT-QED, FT-RMT-TMR, FT-
RMT-TMR-QED) depending upon the dependability and
performance requirements. Each of the ECUs is connected to
the CAN bus. Our SBW architecture consists of three hand
wheel sensors (hws1, hws2, and hws3) that are placed near
the hand wheel to measure the driver’s requests in terms of
hand wheel angle, hand wheel torque, and the hand wheel
speed. Similarly, three front axle sensors (fas1, fas2, and fas3)
measure the front axle position. The hand wheel sensors
(the front axle sensors) are connected to the HW ECUs (FAA
ECUs) by point-to-point links. Two front axle actuator (FAA)
motors (FAA motor 1 and FAA motor 2) operate in active
redundancy on the front axle while two hand wheel (HW)
motors (HW motor 1 and HW motor 2) operate in active
redundancy on the hand wheel.

A SBW system aims to provide two main services [2]: (1)
Front axle control (FAC) that controls the wheel direction
in accordance with the driver’s request; and (2) Hand
wheel force feedback (HWF) that provides a mechanical-like
force feedback to the hand wheel. In our implementation
of the SBW function, the FAC function is implemented
by HW ECU1 and FAA ECU1, and the HWF function
is implemented by FAA ECU2 and HW ECU2. In the
following, we further elaborate FAC and HWF functions’
implementations for the SBW application.

4.1.1 Front axle control function
The FAC function computes the orders that are given
to the front axle motor(s) according to the state of the
front axle and the driver’s requests obtained through
the hand wheel. The three HW sensors (hws1, hws2,
and hws3) measure the driver’s requests and send these
measurements to the HW ECU1. The HW ECU1 performs
the necessary filtering and computations on the sensed
input. After the necessary computations, HW ECU1 formats
the computed orders/signals in CAN message format,
calculates the message’s HMAC to provide integrity, and
performs encryption of the message and the associated

TABLE 1: QoS score S versus pure delay TP for a steering
system [2].

Steering System Configuration TP (ms) S

Mechanical steering system 0 11.23

Steer-by-wire 3.6 11.21

Steer-by-wire 5.0 11.20

Steer-by-wire 6.0 11.19

Steer-by-wire 8.0 11.17

Steer-by-wire 9.6 11.15

Steer-by-wire 10.0 11.146

Steer-by-wire 11.5 11.13

HMAC to provide confidentiality. These computations are
required to be completed under a few milliseconds due
to stringent real-time constraints of the SBW system. The
encrypted messages are sent by the HW ECU1 CAN
controllers to the FAA ECU1 via the CAN bus. The FAA
ECU1, which is placed behind the front axle, uses the data
sent by the HW ECU1 as well as the last wheel position to
determine the commands for the FAA motor 1 and 2.

4.1.2 Hand wheel force feedback function

The HWF function computes the orders that are given
to the hand wheel motor(s) according to the speed of
the vehicle, the front axle position, and the front tie rod
force. The three front axle sensors (fas1, fas2, and fas3)
send the sensed front axle position to the FAA ECU2. The
FAA ECU2 performs the necessary computations, formats
the computed signals/values in CAN message format,
calculates HMAC, and performs encryption of the message
and the associated HMAC. The FAA ECU2 CAN controller
sends the encrypted messages on the CAN bus, which are
then consumed by the HW ECU2 to compute the commands
for HW motor 1 and 2 to provide the necessary force
feedback to the HW.

4.2 QoS and Behavioral Reliability

A SBW system is sensitive to the delay from the driver’s
request at the hand wheel to the reception of the request
by the front axle actuators. This end-to-end delay/response
time Tres is perceived as the QoS, and can impact
availability and safety in the worst case if exceeded beyond
a critical threshold Tmax. The behavioral reliability is defined as
the probability that the worst-case response time is less than
the critical threshold [6]. Automotive OEMs determine Tmax

by various means, such as Matlab/Simulink simulations,
vehicular network simulations, vehicle system simulations,
and vehicle tests, etc. The impact of Tres variation on
vehicle’s performance and stability can be evaluated in
terms of a QoS score, denoted by S, determined by the time
required to reach the desired position and stability. Table 1
shows the relation between S and the perturbation time
(pure delay) for an instantaneous rotation of handwheel
from 0 ◦ to 45 ◦ at 100 km/h (Table 1 is derived by
extrapolating the data in [2]). We observe from the table
that with a minimum tolerable score of 11.19, the critical
limit Tmax for the response time is 6 ms beyond which the
vehicle becomes unstable and the safety of the driver can be
at risk.

In the following, we analytically model the response
time for the SBW functions. We also model the error

9

resilience provided by our adopted FT approaches
(Section 3) for the SBW system subject to the implicit timing
constraints imposed by behavioral reliability.

The Tres for the FAC function (and the HWF function)
comprises of the pure delay TP , the mechatronic delay Tmech,
and the sensing delay Tsens, i.e.,

Tres = TP + Tmech + Tsens (5)

The pure delay comprises of the ECUs’ computational
delay for processing the driver’s command, producing the
command for the actuator, and the transmission delay
including the bus arbitration. The pure delay for our secure
and dependable SBW system also consists of processing
delay for the incorporated security and dependability
primitives. The mechatronic delay is the delay introduced
by actuators such as electric motors. The sensing delay
corresponds to the delay involved in sensing the driver’s
command (front axle position) and storing the sensed
information in a memory location accessible by HW ECUs
(FAA ECUs). Since Tmech and Tsens can be bounded
by a constant and can be different for different kind of
actuators and sensors, we focus on TP for our analysis [2].
Systems that cannot guarantee a TP lower than a tolerable
upper bound Tmax are considered unstable. The behavioral
reliability PBR evaluation is based on the worst-case TP and
not its nominal value because of the safety-critical nature of
the system, that is, PBR = P [TWC

P < Tmax], where TWC
P

denotes the worst-case TP .
The nominal TP for the FAC function, TFAC

P , is given as

TFAC
P = Tecu−hw1 + Tecu−faa1 + T

hw1−faa1
channel , (6)

where Tecu−hw1 and Tecu−faa1 denote the computation time

at HW ECU1 and FAA ECU1, respectively, and T
hw1−faa1
channel

denotes the channel time to transmit secure messages from
HW ECU1 to FAA ECU1.

The worst-case TP for the FAC function, TFAC
P−WC , is

given as

TFAC
P−WC = n1 · Tecu−hw1 + n2 · Tecu−faa1 + n3 · T

hw1−faa1
channel ,

n1, n2 ∈ {1, 2, . . .}, n3 ∈ {1, 1.167, 1.33, 1.5, . . .}, (7)

where n1 and n2 denote the number of computations
required to yield an error-free result at HW ECU1 and
FAA ECU1, respectively, and n3 denotes the number of
transmissions required for error-free sending of secure
messages over CAN. In Eq. (7), n3 values follow a fractional
variation as six encrypted CAN frames are required for one
unencrypted message in our secure and FT SBW system,
and errors can occur in transmission of any or all of the
frames.

For ensuring the QoS dictated by behavioral reliability,
the TP−WC must be less than or equal to Tmax. Hence, for
the FAC function

n1 ·Tecu−hw1+n2 ·Tecu−faa1+n3 ·T
hw1−faa1
channel ≤ Tmax (8)

Eq. (8) helps in analyzing the number of computational
errors (i.e., errors occurring in the computation due
to permanent, transient and/or intermittent faults) and
transmission errors tolerated by a secure and dependable
SBW system to attain the desired QoS and behavioral
reliability corresponding to Tmax. Eq. (8) determines exactly

the maximum number of tolerable errors for one component
(HW ECU1, FAA ECU1, or channel) given the parameters
for the other two components are fixed for FT-RMT. Eq. (8)
indicates that early detection of errors in the program,
which could be caused by permanent, transient and/or
intermittent faults, can provide room for more computations
to yield the error-free result within the time constraint
dictated by the required QoS. We reemphasize that the
dependability focus of this paper is on the detection and
correction of permanent and transient, and intermittent
faults. The program errors resulting from other sources (e.g.,
specification faults, control flow, and timing errors, etc.)
need to be vetted through various hardware and software
verification and assurance techniques during the design
and test phase. For FT-RMT-QED, Eq. (8) gives an estimate
for the maximum number of tolerable errors. The exact
number of maximum tolerable errors for FT-RMT-QED is
determined by inserting the computation time value for
the error detected at a particular point in the program. For
example, using FT-RMT-QED and keeping n2 and n3 fixed,
actual n1 · Tecu−hw1 is determined as

n1·Tecu−hw1 =

{

TC
ecu−hw1

, n1 = 1

(n1 − 1) · TQED
ecu−hw1

+ TC
ecu−hw1

, n1 ≥ 2.
(9)

where TC
ecu−hw1

denotes the time required for the complete

computation at HW ECU1 whereas T
QED
ecu−hw1

denotes the
error detection time for an erroneous computation at HW
ECU1. Eq. (9) assumes that all errors are detected at the
same point in the program using QED, however, if errors
are detected at different points, error detection times for
the errors detected at different points in the program are
to be added accordingly. Since FT-RMT-TMR-QED can also
correct single errors in the program, Eq. (9) is applicable
for FT-RMT-TMR-QED only for the case when there are
multiple (≥ 2) errors in the program between the inserted
check points so that the majority voting is unable to reach at
a consensus output.

The nominal and worst-case pure delay, and the number
of maximum tolerable errors for the HWF function can be
derived similarly.

5 EVALUATION RESULTS

Our secure and FT automotive CPS design provides
confidentiality, integrity, and authenticity for CAN
messages by AES-128 encryption/decryption and SHA-2-
based HMAC. We implement these security primitives on
an Intel core 2 quad processor Q9450, with symmetric
multiprocessor architecture, operating at 2.66 GHz. We
measure the clock cycles required for execution when
dependability is furnished by dual-cores (FT-RMT and
FT-RMT-QED) and triple-cores (FT-RMT-TMR and FT-
RMT-TMR-QED). The Intel core 2 quad processor
runs GNU/Linux 2.6.18-308.24.1.e15PAE version #1
SMP. We point out that 32-bit symmetric multiprocessor
architecture is prevalent in embedded applications, and
hence we choose this architecture for obtaining clock
cycles. Using the clock cycles, we estimate the security
primitives execution time on a 32-bit multicore ECU
(dual-core/triple-core) for safety-critical automotive CPS

10

TABLE 2: OM,S timing results for a 32-bit ECU operating at 200 MHz. FT-RMT and FT-RMT-QED denote fault-tolerance
by RMT, and fault-tolerance by RMT with QED, respectively.

Operational Mode Error Detection Point ECU Architecture Clock Cycles Time (µs)

Without FT N/A single-core 163,218 816.09

FT-RMT @ end of computation dual-core 222,820 1,114.1

FT-RMT-QED @ end of computation dual-core 230,776 1,153.9

FT-RMT-QED @ HMAC calculation dual-core 158,015 790.1

FT-RMT-QED @ AES expand key operation dual-core 173,843 869.22

FT-RMT-QED @ AES encryption (block 1) dual-core 197,524 987.6

FT-RMT-QED @ AES encryption (block 2) dual-core 215,540 1,077.7

FT-RMT-TMR @ end of computation triple-core 271,437 1,357.18

FT-RMT-TMR-QED @ any triple-core 372,826 1,864.13

TABLE 3: OM,R timing results for a 32-bit ECU operating at 200 MHz. FT-RMT and FT-RMT-QED denote fault-tolerance
by RMT, and fault-tolerance by RMT with QED, respectively.

Operational Mode Error Detection Point ECU Architecture Clock Cycles Time (µs)

Without FT N/A single-core 169,761 848.8

FT-RMT @ end of computation dual-core 230,044 1,150.22

FT-RMT-QED @ end of computation dual-core 238,796 1,193.98

FT-RMT-QED @ AES expand key operation dual-core 89,214 446.07

FT-RMT-QED @ AES decryption (block 1) dual-core 111,238 556.19

FT-RMT-QED @ AES decryption (block 2) dual-core 134,101 670.5

FT-RMT-QED @ AES decryption (block 3) dual-core 164,482 822.41

FT-RMT-QED @ formatting received HMAC dual-core 182,466 912.33

FT-RMT-QED @ HMAC calculation dual-core 230,564 1,152.82

FT-RMT-TMR @ end of computation triple-core 296,339 1,481.7

FT-RMT-TMR-QED @ any triple-core 391,099 1,955.5

applications. We adopt OpenMP [31] to provide RMT-
based FT on a multicore architecture. For our case study,
we assume the steering wheel sensor sampling rate to
be fixed at 420 Hz, that is, Tsens = 2.38 ms [32]. We
simulate our SBW system in Vector CANoe [33] with
CAN baud rate set to 1 Mbps. We use CAPL (Vector
CANoe programming language) to implement the SBW
functions on ECUs. This section first presents the theoretical
cryptanalysis of our proposed security approach. Then this
section discusses timing analysis for implementing security
and dependability primitives on a 32-bit multicore ECU. We
then quantify the number of computational faults tolerated
by ECUs for the SBW system with given QoS and behavioral
reliability constraints. Finally, the section presents scalability
analysis for the SBW system as the CAN bus load varies.

5.1 Cryptanalysis

Our proposed security approach (Section 3.3) provides
resilience against the security threat model described in
Section 3.2. The security of our proposed scheme relies upon
the security of AES encryption and SHA-2 hash function.
There is currently no known analytical attack against AES
and a brute-force attack leveraging a supercomputer (10.51
petaFLOPS) would require 1 billion billion (1018) years to
crack the 128-bit AES key [34]. There are also currently no
known collisions or attacks against full round SHA-2 [35].
This cryptanalysis discussion assumes that side-channel
attacks can be thwarted. Cryptanalysis using side-channel
attacks is beyond the scope of this paper.

5.2 Timing Analysis

For timing analysis of our FT approaches, we inject
soft errors at different points in the program (security

primitives implementation). Our software-based fault
injection emulates bit flipping in the program/memory due
to external noise and/or radiation. We note that for fault
tolerance timing analysis of our approach, fault locations
can assume any distribution (e.g., uniform, Gaussian), can
be time or space triggered, and can be injected manually or
through the use of dedicated fault injection tools. For precise
control of error locations at different phases of the program,
we have manually inserted/triggered errors in the program
by code manipulation.

Table 2 presents the timing results with FT operational
modes (FT-RMT, FT-RMT-QED, FT-RMT-TMR, and FT-
RMT-TMR-QED) for a 32-bit ECU operating at 200 MHz
for the OM,S computations at the sending CAN node given
by Eq. (1). We measure the clock cycles (averaged over 10
runs to smooth any discrepancies due to operating system
overheads) using rdtsc() [36] at the start and end of
computations. Table 2 indicates that incorporating FT (in
any configuration: FT-RMT, FT-RMT-QED, FT-RMT-TMR,
or FT-RMT-TMR-QED) incurs performance overhead as
compared to the single-core implementation with no FT. For
example, FT-RMT, FT-RMT-QED, FT-RMT-TMR, and FT-
RMT-TMR-QED incur performance overheads of 36%, 41%,
66%, and 128%, respectively, at the sending CAN node. The
FT techniques incur performance penalty due to inherent
multi-threading overhead, and additional instructions for
comparison and copy operations. Results verify that the FT-
RMT-QED (FT-RMT-TMR-QED) enables earlier detection
(and/or correction) of errors for OM,S computations as
compared to the FT-RMT (FT-RMT-TMR) depending on the
error point in the program. For example, the FT-RMT-QED
detects an error 41% clock cycles earlier as compared to the

11

FT-RMT when the error occurs at HMAC calculation.
Table 3 presents the timing results for a 32-bit ECU

operating at 200 MHz for the OM,R computations at the
receiving CAN node given by Eq. (3). The FT approaches at
the receiving CAN node also incur performance overhead
as compared to the single-core implementation with no FT.
Results reveal that FT-RMT, FT-RMT-QED, FT-RMT-TMR,
and FT-RMT-TMR-QED incur performance overheads of
36%, 41%, 75%, and 130%, respectively, at the receiving
CAN node. Results verify that FT-RMT-QED enables early
detection of errors as compared to FT-RMT for the OM,R

computations. For example, FT-RMT-QED detects an error
158% clock cycles earlier than FT-RMT when the error
occurs at the AES expand key operation.

Results in Table 2 and Table 3 indicate that FT-
RMT-TMR-QED incurs more overhead than FT-RMT-
QED because of an additional redundant thread as well
as additional comparison and copy instructions. The
comparison of the three threads outputs for majority voting
in case of FT-RMT-TMR-QED requires more instructions
than the comparison of the two threads outputs for FT-RMT-
QED. Furthermore, FT-RMT-TMR-QED requires additional
copy instructions to copy the correct output determined by
majority voting to an additional buffer as well as to copy
the determined correct output to the faulty thread output so
that the future computations can proceed from an error-free
state, which permits error detection and correction during
the course of computation.

Although FT-RMT-TMR-QED incurs additional
overhead as compared to FT-RMT-QED for an error-free
computation, FT-RMT-TMR-QED can provide performance
improvement over FT-RMT-QED in case errors are detected
in the computation. This better performance of FT-RMT-
TMR-QED over FT-RMT-QED in the presence of errors can
be vital for time-constrained safety-critical applications.
Our experiments indicate that FT-RMT-TMR-QED is
amenable for QEDC in error-prone environments (e.g.,
high electromagnetic interference (EMI), and radiations)
because of on-the-fly error correction capability furnished
by majority voting. The FT-RMT-QED, on the contrary,
requires recomputation from start of the program in
case of error detection, which can take longer to obtain
error-free result as compared to FT-RMT-TMR-QED. The
time required to obtain an error-free result from FT-RMT-
QED includes the time to detect error(s) plus the time
for a complete error-free computation. Table 4 shows the
performance advantage of FT-RMT-TMR-QED for QEDC at
the sending CAN node in an error-prone environment with
errors occurring at different points (computational phases)
in the program. In Table 4, ex denotes error detection points
in the program: e1 → HMAC calculation; e2 → AES expand
key operation; e3 → AES block 1 encryption; and e4 →
AES block 2 encryption. The last row in Table 4 represents
the case where errors occur at each major computational
phase in the program. Results show that FT-RMT-TMR-
QED can provide 162% performance improvement over
FT-RMT-QED in the presence of multiple soft errors.

5.3 QoS and Behavioral Reliability

An SBW system is sensitive to the delay from the driver’s
request at the hand wheel to the corresponding response

TABLE 4: Performance advantage (I%) of
FT-RMT-TMR-QED (denoted as FTQED

TMR
) over FT-RMT-QED

for QEDC.

Error @ FT-RMT-QED (ms) FTQED
TMR (ms) I%

e1 0.79 + 1.15 = 1.94 1.86 4.3

e2 0.869 + 1.15 = 2.02 1.86 8.6

e3 0.988 + 1.15 = 2.138 1.86 14.9

e4 1.08 + 1.15 = 2.23 1.86 19.9

e1 + e2 + 0.79 + 0.869 + 0.988 +
1.86 162

e3 + e4 1.08 + 1.15 = 4.88

TABLE 5: The maximum number of allowed computational
runs at HW ECU1 n1 to yield correct result for the FAC

function with Tmax = 6 ms.

n2 & n3
n1 n1 n1 n1 n1 n1

FTa FT b FT c FTd FT e FTf

n2 = 1, n3 = 1 3 3 4 4 3 3

n2 = 1, n3 = 1.167 3 3 4 4 3 3

n2 = 1, n3 = 1.33 3 3 4 4 3 3

n2 = 1, n3 = 1.5 3 3 4 3 3 3

n2 = 1, n3 = 1.667 3 3 4 3 3 3

n2 = 1, n3 = 1.833 3 3 3 3 3 3

n2 = 1, n3 = 2 3 2 3 3 3 3

from the front axle actuators. This delay is perceived as
the QoS and can impact availability and safety if exceeded
beyond a certain critical threshold Tmax. The pure delay for
a stable SBW system must be less than the critical delay
Tmax despite recomputations (permitted by FT approaches
such as FT-RMT and FT-RMT-QED on error detection) and
retransmissions to mask off computation and transmission
errors, respectively.

We conduct experiments to determine the maximum
number of allowed recomputations at SBW ECUs to yield
error-free results subject to a critical delay Tmax of 6 ms.
For brevity, we present results for FT-RMT and FT-RMT-
QED only, however, FT-RMT-TMR and FT-RMT-TMR-QED
depicts similar trends. The number of faults tolerated at HW
ECU1 is given by (n1 − 1) since n1 is the total number of
computations required to obtain an error-free result. Table 5
depicts the maximum number of allowed recomputations
at HW ECU1 to yield correct result for the FAC function

when Tmax = 6 ms and T
hw1−faa1
channel = 0.737 ms. n2 denotes

the number of computational runs at FAA ECU1 and n3

denotes the number of transmissions required for error-
free transmission of the encrypted message. FT a denotes
FT-RMT, FT b denotes FT-RMT-QED with error detected at
the end of computation, FT c denotes FT-RMT-QED with
error detected at HMAC calculation, FT d denotes FT-RMT-
QED with error detected at AES expand key operation,
FT e denotes FT-RMT-QED with error detected at AES
encryption of block 1, and FT f denotes FT-RMT-QED with
error detected at AES encryption of block 2.

Results (Table 5) indicate that FT-RMT-QED permits
more (or at least equal) recomputations than FT-RMT,
depending on the error detection point at HW ECU1, to
yield correct result within the time constraints imposed by
the desired QoS. For example, when n2 = 1, n3 = 1, and
Tmax = 6, FT-RMT-QED tolerates 50% more faults (n1 − 1)
than FT-RMT (3 allowed recomputations for FT-RMT-QED
as compared to 2 for FT-RMT) when FT-RMT-QED detects

12

TABLE 6: The maximum number of allowed computational runs at FAA ECU1 n2 to yield correct result for the FAC
function with Tmax = 6 ms.

n1 & n3
n2 n2 n2 n2 n2 n2 n2 n2

FTa FT b FT g FTh FT i FT j FTk FT l

n1 = 1, n3 = 1 3 3 7 6 5 4 4 3

n1 = 1, n3 = 1.167 3 3 7 6 5 4 4 3

n1 = 1, n3 = 1.33 3 3 7 5 5 4 3 3

n1 = 1, n3 = 1.5 3 3 6 5 4 4 3 3

n1 = 1, n3 = 1.667 3 3 6 5 4 3 3 3

n1 = 1, n3 = 1.833 3 2 6 5 4 3 3 3

n1 = 1, n3 = 2 2 2 5 4 4 3 3 3

error at HMAC calculation or expand key operation. Results
show that in the presence of transmission errors (n3 > 1),
FT-RMT-QED can permit slightly less computations than
FT-RMT when error is detected at the end of computation
due to the overhead of QED checks insertions.

Table 6 depicts the maximum number of allowed
recomputations at FAA ECU1 to yield correct result for

the FAC function when Tmax = 6 ms and T
hw1−faa1
channel

= 0.737 ms. The number of faults tolerated at FAA
ECU1 is given by (n2 − 1). In the table, n1 denotes
the number of computational runs at HW ECU1 and n3

denotes the number of transmissions required for error-free
transmission of the encrypted message. FT a denotes FT-
RMT, FT b denotes FT-RMT-QED with error detected at the
end of computation, FT g denotes FT-RMT-QED with error
detected at AES expand key operation, FTh denotes FT-
RMT-QED with error detected at AES decryption of block
1, FT i denotes FT-RMT-QED with error detected at AES
decryption of block 2, FT j denotes FT-RMT-QED with
error detected at AES decryption of block 3, FT k denotes
FT-RMT-QED with error detected at formatting received
HMAC, and FT l denotes FT-RMT-QED with error detected
at HMAC calculation at the receiving node.

Table 6 indicates that FT-RMT-QED permits more (or at
least equal) recomputations than FT-RMT, depending on the
error detection point at FAA ECU1, to yield correct result
within the time constraints imposed by the desired QoS. For
example, when n1 = 1, n3 = 1, and Tmax = 6 ms, FT-RMT-
QED tolerates 200% more faults (n2 − 1) than FT-RMT (6
allowed recomputations for the FT-RMT-QED as compared
to 2 for FT-RMT) when FT-RMT-QED detects error at AES
expand key operation.

5.4 Scalability Analysis

Scalability analysis assesses system’s performance for a
projected addition of new components/messages later
in the design process. Our scalability analysis assists
automotive CPS early design phases where tactical
decisions, such as message priority assignments, are to
be made in the presence of incomplete and estimated
information such as bus load. To investigate the scalability
of our secure and dependable SBW system over CAN, we
measure TP and Tres both for the FAC function and the
HWF function (TFAC

P and THWF
P denote the pure delay for

the FAC function and the HWF function, respectively). First,
we analyze the system feasibility without any additional
messages on the CAN bus. After feasibility analysis, we
study the effect of additional messages on the CAN bus. The
study of the additional CAN messages’ effect is important

as a CAN bus can need to carry messages for multiple
distributed control functions. Furthermore, since the high
computing power imparted by multicore ECUs can enable
implementation of multiple control functions on a single
multicore ECU (Section 3.4), additional messages will need
to be transmitted on the CAN bus making the scalability
analysis imperative. For comprehensive scalability study
of the SBW system, we add messages both with higher
priority as well as lower priority than the SBW application’s
messages on the CAN bus (in the rest of this paper, we
denote these messages as high-priority and low-priority for
brevity). We investigate the jitter induced in the pure delay
of the SBW system due to additional load on the CAN
bus. We also analyze the effect of higher priority messages’
payload sizes on the SBW system’s pure delay.

5.4.1 Feasibility Analysis
To investigate the feasibility of CAN for safety-critical real-
time constrained cybercar applications, we simulate our
SBW system without any additional messages on the CAN
bus carrying the SBW application’s messages. We obtain
results for the SBW system with FT-RMT-QED as well as FT-
RMT-TMR-QED for computations at SBW ECUs. For SBW
system with FT-RMT-QED, we take Tecu−hw1 and Tecu−faa2

to be 1.15 ms (Table 2), and Tecu−faa1 and Tecu−hw2 to be
1.19 ms (Table 3). For SBW system with FT-RMT-TMR-QED,
we take Tecu−hw1 and Tecu−faa2 to be 1.86 ms (Table 2), and
Tecu−faa1 and Tecu−hw2 to be 1.96 ms (Table 3). To clarify,
we point out that these time values are selected based on the
computation time of sending and receiving ECUs where the
FAC function is implemented by HW ECU1 and FAA ECU1
and the HWF function is implemented by FAA ECU2 and
HW ECU2 (Section 4.1).

Results for the SBW system with FT-RMT-QED reveal
that the response time and pure delay for the HWF function
displays moderate jitters caused by the small channel time
fluctuations. However, these pure delay jitters are still well
within Tmax. For example, the pure delay jitter for the HWF
function is 24% on average over the SBW application run.
The variation in channel time for the HWF function as
compared to no variations for the FAC function is due to
the lower priority of the HWF function’s messages than the
FAC function’s messages.

Fig 3 depicts response times, pure delays, and channel
times both for the FAC function and the HWF function
for the SBW system with FT-RMT-TMR-QED. Time on x-
axis represents simulation times at different instants over
the run of the SBW application to capture the overall
timing behavior of the SBW system. Comparison with the

13

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
0

2

4

6

8

10

Simulation Time t

S
te

er
−

by
−

w
ire

 s
ys

te
m

 ti
m

e
(m

s)

T
res
FAC T

P
FAC T

channel
FAC T

res
HWF T

P
HWF T

channel
HWF

Fig. 3: Response time, pure delay, and channel time for the
SBW system with FT-RMT-TMR-QED.

corresponding results for FT-RMT-QED reveals that the
response time and pure delay both for the FAC function and
the HWF function for the SBW system with FT-RMT-TMR-
QED is slightly greater than the corresponding response
time and pure delay for the SBW system with FT-RMT-QED
due to additional computational time required for FT-RMT-
TMR-QED in case of no errors. The channel times, for both
the FAC function and the HWF function, for the SBW system
with FT-RMT-TMR-QED are equal to the corresponding
times for the SBW system with FT-RMT-QED. Results in
Fig. 3 assume an error-free run of the computations. We
point out that the timing results for the SBW system with FT-
RMT-QED would be shifted upward (implying additional
required time) for computations with errors at multiple
points (locations) in the program whereas the SBW system
with FT-RMT-TMR-QED would be able to maintain the
timing behavior in the presence of single transient errors
occurring at multiple points in the program because of
on-the-fly error detection and correction capabilities of FT-
RMT-TMR-QED (Table 4).

Results verify that the pure delay for both the FAC and
the HWF functions are much less than the typical critical
delay for a SBW system (of the order of few milliseconds to
tens of milliseconds). These results establish the feasibility
of our secure and dependable SBW system implementation
over the CAN bus.

5.4.2 Effect of Additional Messages & Bus Load

To investigate the scalability of CAN for safety-critical
real-time constrained cybercar applications, we simulate
our SBW system with both low-priority and high-priority
additional messages on the CAN bus carrying the SBW
application’s messages. We studied the effect of low-priority
and high-priority message sizes on the pure delay and delay
jitter of the SBW function. We further examined the effect of
high-priority message sizes on the pure delay of the SBW
function.

Effect of Additional Low-Priority Messages on Pure
Delay: Our experiments with high-priority and low-priority
messages on the CAN bus reveal that the additional lower
priority messages than the SBW function’s (e.g., FAC)
messages have negligible effect on pure delay of the SBW
function. Fig. 4 depicts the effect of increasing bus load due
to low-priority messages on the average pure delay for the
SBW application. For our experiments, the SBW application
messages (including both FAC and HWF functions) with

10% 60% 72% 93% 99%
0

1

2

3

4

5

Average Bus Load (%)

P
ur

e
D

el
ay

 (
m

s)

T
P
FAC

T
P
HWF

Fig. 4: Effect of increasing bus load due to low-priority
messages on pure delay of the SBW application.

20 30 40 50 60 70 80 90 100
1

2

4

10

100

Average Bus Load (%)
P

ur
e

D
el

ay
 (

m
s)

T
P
FAC

T
P
HWF

Fig. 5: Effect of increasing bus load due to high-priority
messages on pure delay of the SBW application.

no additional messages on the CAN bus correspond to the
average bus load of 10%. Results show that the increasing
bus load due to low-priority messages has negligible impact
on the pure delay for both the FAC and the HWF function.
For example, TFAC

P and THWF
P increases by 2% and

12%, respectively, as the additional low-priority messages
increases the average bus load from 10% to 99%.

Effect of Additional Low-Priority Messages on Delay Jitter:
Experimental results reveal that high bus load due to low-
priority messages does not induce large jitter in pure delay
for both the FAC and the HWF function. For example, the
standard deviation (σ) for TFAC

P and THWF
P is 0.035 ms and

0.34 ms, respectively, for an average bus load of 99% due to
additional low-priority messages. The comparatively high
σ for THWF

P than TFAC
P is due to lower priority of HWF

function’s messages than the FAC function’s messages in
our SBW application design.

Effect of Additional High-Priority Messages on Pure Delay:
Experiments reveal that additional high-priority messages
can drastically impact pure delay of the SBW application.
Fig. 5 depicts the effect of increasing bus load due to high-
priority messages on the average pure delay for the SBW
application. Results show that both the average TFAC

P and
THWF
P increase as the bus load grows. Results indicate that

TFAC
P and THWF

P increases by 58.4% and 78%, respectively,
as the average bus load due to high-priority messages
increases from 45% to 88%. The figure shows that this delay
increase is not linear and shoots up drastically above the
average bus load of 97%.

Effect of Additional High-Priority Messages on Delay
Jitter: Experiments indicate that high-priority messages can
induce large jitters in pure delay for both the FAC and the
HWF function especially at high bus loads. Fig. 6 depicts the

14

20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

Average Bus Load (%)

P
ur

e
D

el
ay

 S
ta

nd
ar

d
D

ev
ia

tio
n

(m
s)

σ
T

P

FAC

σ
T

P

HWF

Fig. 6: Effect of increasing bus load due to high-priority
messages on the pure delay’s standard deviation σ of the

SBW application.

effect of increasing bus load due to high-priority messages
on the average pure delay’s standard deviation σ for the
SBW application. σFAC

TP
and σHWF

TP
denote σ for FAC and

HWF functions, respectively. Results show that the σHWF
TP

increases piecewise linearly with the increasing average bus
load. σFAC

TP
remains zero implying no variations in pure

delay for the FAC function up to an average bus load of
97% beyond which the σFAC

TP
increases. We point out that

although σFAC
TP

is zero for average bus loads less than 97%,
pure delay for the FAC function increases linearly as the
bus load increases. The comparatively high σ for THWF

P

than TFAC
P is due to lower priority of HWF function’s

messages than the FAC function’s messages in our SBW
application design. This jitter in pure delay due to additional
high-priority messages can render the SBW system unstable.
Further experiments with high-priority messages reveal that
the SBW system can become completely unavailable if the
CAN bus load due to high-priority messages reaches 99%.

Effect of Additional High-Priority Message Sizes on Pure
Delay: To study the impact of high-priority message sizes on
pure delay, we conduct simulations with different message
payloads. Our simulation setup consists of 7 additional
high-priority messages that are sent every 1 ms while
the messages’ payload varies. Fig. 7 depicts the effect of
additional high-priority messages’ payload on pure delay
for both the FAC and the HWF functions. The figure
also shows the resulting average bus load as payload
for additional high-priority CAN messages varies. Results
reveal that the average pure delay increases for both the FAC
function and the HWF function as the payload increases.
For example, the average TFAC

P and the average THWF
P

increases by 115% and 133%, respectively, as the size of
additional high-priority messages’ payload increases from
1 byte to 8 bytes. The average THWF

P increases more than
the average TFAC

P because our SBW system design assigns
higher priority to the FAC function’s messages than the
HWF function’s messages.

Scalability analysis suggests that safety-critical and time-
constrained automotive CPS that incorporate security and
dependability primitives can be implemented over CAN
with careful selection of security and FT approaches as
well as prudent priority assignment of CPS application’s
messages over CAN. Furthermore, for a stable automotive
CPS over CAN, the bus load due to additional higher
priority messages needs to be monitored and controlled.

1 2 4 6 8
0

2

4

6

8

10

12

Message Data Payload (bytes)

P
ur

e
D

el
ay

 (
m

s)

T
P
FAC

T
P
HWF

L
B
 = 98.13%

L
B
 = 84.23%

L
B
 = 70.63%

L
B
 = 50.93%

L
B
 = 57.63%

Fig. 7: Effect of increasing high-priority messages’ payload
on pure delay of the SBW application. LB denotes the

average bus load.

One way of message monitoring and control is to implement
firewall and authentication services in gateway nodes that
connect different automotive subnetworks.

6 CONCLUSIONS

In this paper, we provide an integrated approach for the
design of secure and dependable automotive CPS with
SBW application over controller area network (CAN) as
a case study. The challenge is to embed both security
primitives (confidentiality, integrity, and authentication)
and dependability primitives over CAN while ensuring that
the real-time constraints of the automotive CPS applications
are not violated. Our design leverages multicore (dual-
core/triple-core) electronic control units (ECUs) to provide
fault tolerance (FT) to the system by redundant multi-
threading (FT-RMT) and FT-RMT with quick error detection
(FT-RMT-QED).

Results reveal that FT-RMT-QED can detect errors 158%
clock cycles earlier as compared to FT-RMT. We quantify
the number of computational errors permitted by FT-RMT
and FT-RMT-QED within the SBW system’s worst-case
response time threshold imposed by the desired QoS and
behavioral reliability. Results show that FT-RMT-QED can
tolerate 200% more faults than FT-RMT within the time
constraints imposed by the desired QoS. To permit single
error detection as well as correction on-the-fly without
recomputations, we extend our FT approach to utilize triple-
core ECUs that can be configured as either FT-RMT-TMR
(an extension of FT-RMT for TMR) or FT-RMT-TMR-QED
(an extension of FT-RMT-QED for TMR). Results reveal
that FT-RMT-TMR-QED can provide 162% performance
improvement over FT-RMT-QED in presence of multiple
transient errors. Results verify the feasibility of our secure
and dependable SBW system implementation over CAN.
Scalability analysis reveals that the SBW system is able
to maintain the desired QoS even in the presence of
additional low-priority messages on the bus. Scalability
analysis suggests that for a stable SBW system over CAN,
the bus load due to additional high-priority messages must
be restricted to less than 97%.

Our proposed approach can be adopted for early
investigations of security, dependability, and performance
interplay for other in-vehicle network protocols, such as
CAN with flexible data-rate (CAD FD) or FlexRay. Our
future work plans to investigate cost, performance, FT, and

15

energy tradeoffs of hardware acceleration of security and
dependability primitives for automotive CPS.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation (NSF) (NSF CNS Grant #1743490 and NSF CNS
Grant #1649423) and the Office of Naval Research (ONR)
(Award #N00014-17-1-2500). Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the NSF and the ONR.

REFERENCES

[1] ISO26262, “Road vehicles – Functional safety,” January 2013.
[Online]. Available: http://www.iso.org/iso/catalogue detail?
csnumber=43464

[2] C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, Design of
Automotive X-by-Wire Systems. The Industrial Communication
Technology Handbook CRC Press, 2005.

[3] I. Koren and C. M. Krishna, Fault-Tolerant Systems. Morgan
Kaufmann Publishers, 2007.

[4] A. Vinel, N. Lyamin, and P. Isachenkov, “Modeling of
V2V Communications for C-ITS Safety Applications: a CPS
Perspective,” IEEE Communications Letters, May 2018.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, and T. Kohno,
“Experimental Security Analysis of a Modern Automobile,”
in Proc. of IEEE Symposium on Security and Privacy, Oakland,
California, May 2010.

[6] C. Wilwert, Y.-Q. Song, F. Simonot-Lion, Loria-Trio, and
T. Clément, “Evaluating Quality of Service and Behavioral
Reliability of Steer-by-Wire Systems,” in Proc. of IEEE Conference
on Emerging Technologies and Factory Automation (ETFA), Lisbon,
Portugal, September 2003.

[7] M. L. Chávez, C. H. Rosete, and F. R. Henrı́quez, “Achieving
Confidentiality Security Service for CAN,” in Proc. of IEEE
International Conference on Electronics, Communications, and
Computers (CONIELECOMP), Puebla, Mexico, March 2005.

[8] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick Error
Detection Tests for Effective Post-Silicon Validation,” in Proc. of
IEEE Internation Test Conference (ITC), Austin, Texas, November
2010.

[9] E. Beckschulze, F. Salewski, T. Siegbert, and S. Kowalewski,
“Fault Handling Approaches on Dual-Core Microcontrollers in
Safety-Critical Automotive Applications,” in Proc. of International
Symposium on Leveraging Applications of Formal Methods, Verification,
and Validation (ISoLA), Porto Sani, Greece, October 2008.

[10] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-Tolerant Platforms for Automotive
Safety-Critical Applications,” in Proc. of ACM International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), San Jose, California, October-November 2003.

[11] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Violante,
“Soft-Error Detection through Software Fault-Tolerance
Techniques,” in Proc. of the 14th International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT), 1999, pp. 210–218.

[12] J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus, “On Benchmarking the
Dependability of Automotive Engine Control Applications,” in
Proc. of International Conference on Dependable Systems and Networks
(DSN), June-July 2004, pp. 857–866.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in Proc. of the 20th USENIX conference on Security (SEC),
San Francisco, California, August 2011.

[14] T. Hoppe, S. Kiltz, and J. Dittmann, “Automotive IT-Security as a
Challenge: Basic Attacks from the Black Box Perspective On the
Example of Privacy Threats,” in Proc. of International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), Hamburg,
Germany, September 2009.

[15] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and Privacy Vulnerabilities
of In-Car Wireless Networks: A Tire Pressure Monitoring System
Case Study,” in Proc. of the 19th USENIX conference on Security
(SEC), Washington, DC, August 2010.

[16] A. Groll and C. Ruland, “Secure and Authentic Communication on
Existing In-Vehicle Networks,” in Proc. of IEEE Intelligent Vehicles
Symposium, June 2009, pp. 1093–1097.

[17] D. K. Nilsson, U. E. Larson, and E. Jonsson, “Efficient in-
vehicle delayed data authentication based on compound message
authentication codes,” in IEEE 68th Vehicular Technology Conference,
Calgary, BC, Sep 2008, pp. 1–5.

[18] B. Groza, S. Murvay, A. van Herrewege, and I. Verbauwhede,
LiBrA-CAN: A Lightweight Broadcast Authentication Protocol for
Controller Area Networks. Darmstadt, Germany: Springer Berlin
Heidelberg, 2012, pp. 185–200.

[19] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for
the controller area network (CAN) communication protocol,”
in International Conference on Cyber Security (CyberSecurity),
Washington, DC, Dec 2012, pp. 1–7.

[20] K.-D. Kang, Y. Baek, S. Lee, and S. H. Son, “An attack-resilient
source authentication protocol in controller area network,”
in ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Ithaca, New York, May 2017, pp.
109–118.

[21] A. Munir and F. Koushanfar, “Design and Performance Analysis
of Secure and Dependable Cybercars: A Steer-by-Wire Case
Study,” in Proc. of IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, Nevada, January 2016.

[22] Y. Wu, Y.-J. Kim, Z. Piao, J.-G. Chung, and Y.-E. Kim, “Security
protocol for controller area network using ecandc compression
algorithm,” in IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), Hong Kong, China,
August 2016, pp. 1–4.

[23] L.-B. Fredriksson, “CAN for Critical Embedded Automotive
Networks,” IEEE Micro, vol. 22, no. 4, pp. 28–35, August 2002.

[24] H. Schweppe, T. Gendrullis, M. S. Idress, Y. Roudier, B. Weyl, and
M. Wolf, “Securing Car2X Applications with Effective Hardware-
Software Co-Design for Vehicular On-Board Networks,” in Proc.
of Joint VDI/VW Automotive Security Conference, Berlin, Germany,
October 2011.

[25] T. Ringler, J. Steiner, R. Belschner, and B. Hedenetz, “Increasing
System Safety for By-Wire Applications in Vehicles by Using a
Time Triggered Architecture,” in Proc. of the 17th International
Conference on Computer Safety, Reliability and Security (SAFECOMP),
1998, pp. 243–253.

[26] H. Zeng, M. D. Natale, P. Giusto, and A. Sangiovanni-
Vincentelli, “Using Statistical Methods to Compute the Probability
Distribution of Message Response Time in Controller Area
Network,” IEEE Transactions on Industrial Informatics, vol. 6, no. 4,
pp. 678–691, November 2010.

[27] F. Koushanfar, A.-R. Sadeghi, and H. Seudie, “EDA for Secure and
Dependable Cybercars: Challenges and Opportunities,” in Proc.
of the 49th IEEE/ACM Design Automation Conference (DAC), San
Francisco, California, June 2012.

[28] C. Paar and J. Pelzl, Understanding Cryptography. Springer, 2010.
[29] R. Oppliger, SSL and TLS: Theory and Practice. Artech House, 2009.
[30] Fujitsu. (2012, Feb) Secure hardware extension. [Online].

Available: https://www.escrypt.com/fileadmin/escrypt/pdf/
WEB Secure Hardware Extension Wiewesiek.pdf

[31] OpenMP, “The OpenMP API Specification for Parallel
Programming,” November 2012. [Online]. Available:
http://openmp.org/wp/

[32] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller,
“Timing Modeling and Analysis for AUTOSAR-Based Software
Development - A Case Study,” in Proc. of Design, Automation &
Test in Europe (DATE), Dresden, Germany, March 2010.

[33] Vector, “ECU Development and Test with CANoe,” November
2012. [Online]. Available: http://www.vector.com/vi canoe en.
html

[34] EETimes, “How secure is AES against brute force attacks?” 2013.
[Online]. Available: http://en.wikipedia.org/wiki/Brute-force
attack

[35] C. Dobraunig, M. Eichlseder, and F. Mendel, “Analysis of sha-
512/224 and sha-512/256,” in International Conference on Advances
in Cryptology (ASIACRYPT), November-December 2015, pp. 612–
630.

[36] “Time-stamp counter,” November 2012. [Online]. Available:
http://www.mcs.anl.gov/∼kazutomo/rdtsc.html

16

Arslan Munir (M’09, SM’17) is currently
an Assistant Professor in the Department
of Computer Science (CS) at Kansas State
University (K-State). He holds a Michelle
Munson-Serban Simu Keystone Research
Faculty Scholarship from the College of
Engineering. He was a postdoctoral research
associate in the Electrical and Computer
Engineering (ECE) department at Rice
University, Houston, Texas, USA from May 2012
to June 2014. He received his M.A.Sc. in ECE

from the University of British Columbia (UBC), Vancouver, Canada,
in 2007 and his Ph.D. in ECE from the University of Florida (UF),
Gainesville, Florida, USA, in 2012. From 2007 to 2008, he worked as a
software development engineer at Mentor Graphics in the Embedded
Systems Division.

Munir’s current research interests include embedded and cyber-
physical systems, secure and trustworthy systems, hardware-
based security, computer architecture, multicore, parallel computing,
distributed computing, reconfigurable computing, artificial intelligence
(AI) safety and security, data analytics, and fault tolerance. Munir
received many academic awards including the doctoral fellowship
from Natural Sciences and Engineering Research Council (NSERC)
of Canada. He earned gold medals for best performance in electrical
engineering, gold medals and academic roll of honor for securing rank
one in pre-engineering provincial examinations (out of approximately

300,000 candidates). He is a Senior Member of IEEE.

Farinaz Koushanfar (M’03, SM’14) is a
Professor and Henry Booker Faculty Scholar of
Electrical and Computer Engineering (ECE) at
the University of California San Diego (UCSD),
CA, USA. She is co-founder and co-director of
Center for Machine-Integrated Computing and
Security (MICS) in UCSD. She received her
Ph.D. in Electrical and Computer Engineering,
and MA in Statistics in 2005, both from the
University of California, Berkeley, CA, USA. Her
research interests include embedded systems

security, automated customization of machine learning algorithms, and
adaptive embedded systems design.

Dr. Koushanfar is a recipient of several awards and honors, including
the Presidential Early Career Award for Scientists and Engineers, the
ACM SIGDA Outstanding New Faculty Award, the NAS Kavli Foundation
Fellowship, and the Young Faculty (or CAREER) Awards from the Army
Research Office (ARO), Office of Naval Research (ONR), Defense
Advanced Research Projects Agency (DARPA), and National Science
Foundation (NSF).

