
D2CyberSoft: A Design Automation Tool for Soft
Error Analysis of Dependable Cybercars

Arslan Munir
Computer Science & Engineering Department
University of Nevada, Reno, NV, USA

Email: arslan@unr.edu

Farinaz Koushanfar
Electrical & Computer Engineering Department

Rice University, Houston, TX, USA
Email: farinaz@rice.edu

Abstract—Next generation of automobiles (also known as
cybercars) will escalate the proliferation of electronic control
units (ECUs) to implement novel distributed control applications
such as steer-by-wire (SBW), brake-by-wire, etc. Although the use
of electronic embedded systems improves performance, driving
comfort, safety, and economy for the customer; this electronic
control of automotive systems makes these systems susceptible to
soft errors, which can significantly reduce the availability of these
systems. Enhancing reliability and availability at a minimum
additional cost is a major challenge in automotive systems design.
In this paper, we propose D2CyberSoft—a design automation
tool for cybercars that facilitate cybercar designers in selecting
designs with minimum cost overhead to make safety-critical
automotive functions less vulnerable to soft errors. D2CyberSoft
aids designers by providing built-in models, easy to specify inputs,
and easy to interpret outputs. We elaborate Markov models that
form the basis of D2CyberSoft using SBW as a case study. We
further provide evaluation insights obtained from D2CyberSoft.

Keywords—Automotive embedded systems, soft errors, Markov
models, design automation, availability, dependability, x-by-wire,
steer-by-wire

I. INTRODUCTION AND MOTIVATION

Next generation of automobiles (also known as cybercars)
will increase the proliferation of electronic control units
(ECUs) for implementing novel automotive applications, such
as steer-by-wire (SBW), brake-by-wire, throttle-by-wire (often
collectively referred as x-by-wire). Although computerized
control of automotive systems offers various performance,
comfort, and safety benefits; this computerized control also
dramatically increases the susceptibility of microprocessors to
soft errors. Soft errors are transient errors caused by electrical
noise and high energy particle strikes, such as neutrons from
cosmic rays and alpha particles from the integrated circuit
packaging materials. Soft errors can be pernicious to program
execution by flipping the bits stored in memory or by changing
the values being computed in logic elements.

Soft errors can significantly decrease the availability of
automotive systems. The cyber-physical attributes of modern
automotive systems directly couple automotive systems’
availability to the cybercar’s physical safety and dependability.
Research has demonstrated that soft errors can lead to
critical failures in automotive systems [1]. As automotive
embedded systems permeate into safety-critical functions;
safety, hazard, and availability analysis become imperative
as stipulated in automotive standards. ISO 26262 is a state-
of-the-art automotive standard that classifies risk by four
automotive safety integrity levels (ASILs): ASIL-A, -B, -C, or

-D, where ASIL-D represents the most stringent and ASIL-A
the least stringent level. An ASIL specifies a function’s (item’s)
necessary safety requirements for achieving an acceptable
residual risk. To improve the availability of automotive systems
and meet ASIL requirements in the presence of soft errors,
fault-tolerance (FT) or dependability integration in automotive
designs is imperative.

Dependability integration in automotive systems is
challenging because of stringent cost constraints. In order
to save wiring costs, many ECUs are moved from a
somewhat isolated and comfortable place to near the actuators
that are exposed to harsh environments. To protect the
delicate electronics in the hostile environment of a car,
each ECU is enclosed in a package. Although packaging
can protect automotive electronics; radioactive contaminants
in packaging materials, due to manufacturing issues, are a
source of alpha particles that cause soft errors. Additionally,
addressing soft errors due to neutron strikes poses a substantial
problem because adequate shielding is prohibitively expensive.
Dependability assimilation in automotive systems is also
constrained by strict performance requirements. The integrated
FT techniques to improve reliability and availability must have
a minimal impact on performance because many automotive
systems have hard real-time deadlines (e.g., airbag system’s
operation depends on ECU speed). Traditional safe states such
as resetting an ECU can be a hazardous killer for availability
given the increasing soft failure rates, and thus cannot be
afforded for safety-critical systems.

A holistic availability analysis of automotive systems for
soft errors has not been explored thoroughly in literature. Most
of the contemporary reliability and availability analysis tools
(e.g., ReliaSoft [2], SHARPE [3], OSATE [4]) are general-
purpose and do not include built-in models for availability
analysis of cybercars. Furthermore, most of prior reliability
and availability software tools require a user with a high
degree of expertise in reliability engineering and computer
design. Developing availability models, specifying inputs to
these models, and properly interpreting outputs from these
tools require considerable resources and skills.

To assist designers for design space exploration and
safety assessment of automotive systems, we have developed
D2CyberSoft (Design of Dependable Cybercars in presence of
Soft errors)—a tool that provides a systematic approach for
modeling and prediction of automotive systems’ availability
for different soft error rates. Our main technical contributions
are as follows:



• A design automation tool for design space exploration
and safety (availability) assessment of dependable
cybercars (D2CyberSoft) with SBW application as a
case study.

• Cost-efficient cybercar design to meet various
availability requirements using D2CyberSoft.

• Markov models formulation that provides basis for
D2CyberSoft with SBW application as a case study.

• Comprehensive availability analysis of cybercar
designs for different soft error rates.

To overcome these limitations of prior work, we develop
Markov models for quantifying the availability of various
FT designs. D2CyberSoft would help cybercar designers to
select dependable designs with minimum cost overhead to
make safety-critical automotive functions less vulnerable to
soft errors.

II. RELATED WORK

Prior work on soft errors mitigation in complementary
metal-oxide-semiconductor (CMOS) has traditionally focused
on a memory cells instead of combinational logic because
error detection and correction schemes for memory are well
known. Saleh et al. [5] analyzed transient error recovery in
FT memory systems using a scrubbing technique that was
based on single error correction and double error detection
codes. The authors derived reliability and mean time to
failure (MTTF) expressions for memory systems subjected to
transient errors. Mukherjee et al. [6] studied soft errors in
microprocessor considering an architecture vulnerability factor
(AVF) (AVF is is the probability that a fault in a particular
structure/component will result in a visible error). The authors
measured the AVFs of instruction queue and execution units of
an Itanium2-like IA64 processor. However, the work did not
quantify the system’s availability.

Li et al. [7] observed that traditional MTTF calculation
methods could not give accurate MTTFs for large systems with
long-running workloads and high raw error rates. The authors
suggested that an alternative method, SoftArch, provided
better MTTF estimates for such systems. The work, however,
focused only on MTTF estimation for high-end servers and
did not consider MTTF or availability assessment of embedded
processors in the presence of soft errors.

Soft error analysis of embedded systems has been done
in previous work. Blome et al. [8] analyzed the effect of
soft errors on an ARM926EJ-S embedded processor. Ossi [9]
studied architecture-level soft error detection and correction
strategies that targeted the arithmetic logic units (ALU) within
a microprocessor. Wang [10] developed an analytical model for
neutron-induced soft error rate (SER) estimation and calculated
the SERs for ISCAS85 benchmark circuits. However, the
model required further validation as the SER estimation results
from the developed model depicted significant differences from
previous SER estimation works [11][12]. We point out that
the SER estimation works are complementary to our work, as
D2CyberSoft requires ECUs’ SER estimation.

Some prior work explored permanent and transient faults
in automotive systems. [13] elucidated the modeling of
permanent faults in automotive systems. Skarin et al. [1]

studied the impact of soft errors in a prototype brake-by-
wire system. Results revealed that 30% of the injected errors
(bit flips) passed undetected and caused the ECU to produce
erroneous outputs for the brake actuator, 15% of which
resulted in critical failures. However, the work focused on error
detection and recovery and did not quantify the availability of
the brake-by-wire system in the presence of soft errors.

Several earlier works elaborated dependability related tools
and methodologies. Johnson et al. [14] discussed the purpose
and type of models used for various reliability, availability, and
serviceability modeling tools. Lambert [15] discussed the use
of fault tree analysis to assess failure modes within automotive
systems using a car starting system as a case study. The work
only conducted a qualitative evaluation and did not present
quantitative (probabilistic) insights on the effects of failure in
automotive systems.

III. D2CYBERSOFT

D2CyberSoft is a design automation tool for cybercars
that facilitate designers in selecting designs with minimum
cost overhead to make safety-critical automotive functions less
vulnerable to soft errors. This section elucidates optimization
objective function, inputs and outputs, and design methodology
for D2CyberSoft.

A. Optimization Objective Function

D2CyberSoft solves an optimization problem to determine
a cost-effective cybercar design under various constraints. The
optimization problem can be formulated as:

min costd
s.t. A ≥ a, a ∈ R[0,1]

eci = bi, ∀ ci ∈ S, bi ∈ R≥0

Nci = ni, ∀ ci ∈ S, ni ∈ N

ASILS ≥ y, y ∈ {A,B,C,D}
L = t, t ∈ R≥0 (1)

where costd denotes design cost, which depends on the
level of redundancy integrated in the design for improving
dependability. A denotes target availability of automotive
system S to be designed (e.g., SBW), eci denotes raw SER
of the component i in failure in time (FIT) per bit (1 FIT =
1×10−9 failures per hour) andNci denotes total number of bits
in the component ci of the automotive system S. D2CyberSoft
permits the designer to specify components’ size (e.g., cache
size) from which the tool then estimates the SER of the system.
ASILS specifies the ASIL requirement of the design and L
denotes the desired lifetime for the designed automotive system
(for warranty period specification). We point out that if any
of the input parameters are missing (e.g., eci or Nci of a
component), then default values of these parameters specified
in D2CyberSoft is used. R≥0 denotes the set of real numbers
greater than or equal to zero and N denotes the set of natural
numbers.

B. D2CyberSoft Inputs, Outputs, & Design Methodology

D2CyberSoft takes input from the designer on the desired
availability, ASIL, lifetime, components’ number and size,
and outputs a minimum cost design that satisfies the design



constraints. Availability can be specified in terms of number
of nines (e.g., 0.999 or 99.9% has three nines). D2CyberSoft
provides built-in Markov models for cybercar design focusing
on a SBW application (Section V). D2Cyber Markov models
are specified in SHARPE (Symbolic Hierarchical Automated
Reliability and Performance Evaluator), which requires soft
failure rate (SFR) specification of ECUs involved in the design.

D2CyberSoft calculates the SFR of a processor in two steps
[7]: (1) AVF step—the raw SER of each individual processor
component (e.g., ALU, register file, etc.) is multiplied by an
AVF factor to determine the SFR of that component; and (2)
sum of failure rates (SOFR) step—the SFRs of the individual
components of the processor are summed to calculate the
entire processor’s SFR. The above SFR calculation procedure
assumes that the probability of failure due to a soft error in
a given component is uniform across a program’s execution,
which allows a single AVF value to be used to derate the
raw SER of the component. This uniformity assumption is
reasonable for raw soft error events since the probability of
high energy particle strikes is no different at different points in
the program’s execution for most realistic scenarios. The SOFR
step assumes that the time to failure for a given component
follows an exponential distribution and the failures for different
components are independent of each other. This exponential
distribution assumption is reasonable because the time to
the next high energy particle strike is independent of the
previous strike. The errors introduced due to AVF and SOFR
assumptions are negligible for our SBW case study where the
total number of components is small and the workload consists
of repeated executions of a short program [7].

The SFR of a processor component ci in D2CyberSoft is
determined as:

λs ci = (Nci · eci)×Fc (2)

where Nci denotes total number of bits in the component ci,
eci denotes raw SER of the component ci, and Fci denotes
AVF of the component ci.

For an automotive ECU with main components as
instruction cache, data cache, random access memory
(RAM), register file, instruction fetch/decode unit (IFU),
integer execution unit (IEU), and floating point unit (FPU);
D2CyberSoft estimates the ECU’s overall SFR λs ECU as:

λs ECU = λs I−SRAM + λs D−SRAM + λs RAM

+λs reg + λs IFU + λs IEU + λs FPU (3)

where λs I−SRAM , λs D−SRAM , λs RAM , λs reg, λs IFU ,
λs IEU , and λs FPU denote SFR of the instruction cache,
data cache, RAM, register file, IFU, IEU, and FPU,
respectively. D2CyberSoft uses this ECU’s overall SFR in the
developed Markov models to determine a design’s availability.
D2CyberSoft leverages a greedy approach to solve the
optimization problem for design space exploration (Eq. 1).
D2CyberSoft explores the design space starting from the
lowest cost design (normally the design with least redundancy)
and determines the design’s availability. D2CyberSoft returns
the design configuration as soon as the availability of the
explored design meets the specified requirements.

IV. FT DESIGNS IN D2CYBERSOFT

Automotive systems are subjected to stringent cost
constraints and hence the additional cost for dependability
integration must be minimized by introducing only as much
robustness as needed and not more. The added redundancy in
an FT design should have a minimal impact on automotive
system’s performance as these systems have hard real-time
deadlines. We restrict our dependability study to techniques
that leverage only dual modular redundancy (DMR) and triple
modular redundancy (TMR) considering that stringent cost
constraints in automotive would make the incorporation of
higher N-modular redundancies (i.e., N ≥ 4) infeasible. This
section discusses a few FT designs whose built-in models are
provided in D2CyberSoft.

Acceptance Tests: In contrast to permanent faults, which make
the faulty component useless, soft errors only induce transient
faults that can detected by error detection techniques and
can be recovered by re-computations. “Acceptance tests” or
“range tests” test the acceptability of outputs or results, and
are the only means for error detection when only a single ECU
processor core is operational. D2CyberSoft implementation
of acceptance tests incorporates comparisons with expected
pre-computed ranges of signals, reasonable range of changes
to the current signals, and the computations execution time
comparison with estimated execution times. We point out
that the error detection capabilities of these acceptance tests
are limited. Hence, considering the inherent fallibility of
acceptance tests, D2CyberSoft assigns a large penalty (i.e.,
hazard penalty th) for error recovery that is dependent only
on acceptance tests. D2CyberSoft defines the time to detect an
error from acceptance tests tad as:

tad = ps · ts + pf · th (4)

where ps denotes the probability of successfully detecting an
error through acceptance tests and pf denotes the probability of
failure to detect an error through acceptance tests. ts denotes
the time to run acceptance tests ta and the time to run the
complete computation tc in a given FT configuration, i.e., ts =
ta + tc. th in Eq. 4 denotes the hazard penalty, i.e., penalty
associated with inability to detect an error.

D2CyberSoft designates th as a multiple of ts (ts
denotes the time to run the acceptance test ta and complete
computation tc in a given FT configuration). D2CyberSoft
assigns hazard penalty values depending on the ASIL specified
in design requirements (Eq. 1) to reflect the severity of
the hazard associated with the error detection inability, i.e.,
smallest hazard penalty for ASIL-A and greatest hazard
penalty for ASIL-D.

Non-fault-tolerant (NFT) design: An NFT design does not
leverage any redundancy to improve reliability and availability.
The NFT design cannot detect any permanent fault (hardware
failure) or transient fault by itself. In an NFT design,
acceptance tests provide only means to detect an erroneous
computation caused by a transient fault.

FT by redundant multi-threading (FT-RMT): FT-RMT
leverages dual modular redundancy (DMR) such that the
(safety-critical) computation is performed on two redundant
threads. The output of the threads is compared at the end



of the computation. If the output of the threads match, no
error occurs in the computation otherwise the computation is
erroneous and needs re-computation. FT-RMT can detect one
permanent or transient fault but is unable to correct errors from
the two threads’ outputs. Re-computation is required to correct
a transient fault in an FT-RMT design. FT-RMT introduces
some performance overhead as compared to an NFT design
due to inherent parallelism overhead to manage threads as well
as the cost of additional comparison instructions to compare
the threads’ outputs.

FT-RMT enhanced with quick error detection (FT-RMT-
QED): FT-RMT-QED leverages DMR and further enhances
FT-RMT for quick error detection (QED) [16]. FT-RMT-QED
inserts additional comparison instructions at different points
in the computation to detect errors early in the computation.
In case of error detection at a check point in FT-RMT-
QED, erroneous computation is aborted and re-computation
is performed immediately to obtain an error-free output. This
early error detection and correction (by re-computation) can be
propitious for safety-critical applications with hard real-time
deadlines.

FT-RMT with triple modular redundancy (FT-RMT-TMR):
FT-RMT-TMR uses triple modular redundancy (TMR) such
that the safety-critical computation is performed on three
threads. A majority voter compares the outputs of the three
threads and selects the majority voted output. FT-RMT-TMR
can detect two permanent or transient faults, and can correct
one permanent or transient fault from the threads’ outputs. The
two transient errors can be corrected by re-computation in FT-
RMT-TMR.

FT-RMT-TMR enhanced with quick error detection (FT-
RMT-TMR-QED): FT-RMT-TMR-QED leverages TMR and
further enhances FT-RMT-TMR for QED. FT-RMT-TMR-
QED introduces majority voting at different points in the
program to detect and correct errors early in the computation.
A single error is corrected by majority voting at a check
point in the program whereas the technique allows early re-
computation in case of two errors detection at the check point.

V. MARKOV MODELS FORMULATION FOR SOFT ERRORS

In this section, we discuss Markov models formulation
for soft errors, which forms the basis of D2CyberSoft.
Improving reliability and availability by separate redundant
ECUs in automotives is less feasible from wiring, space, and
cost perspective. Fortunately, multi-cores provide a promising
solution to incorporate redundancy at a minimum additional
cost and hence we analyze the availability of multi-core-based
designs with SBW application as a case study. We point
out that D2CyberSoft is equally valid for designs leveraging
separate redundant ECUs.

A. Steer-by-Wire System

An SBW system replaces a mechanical steering system
with ECUs, sensors, and actuators, which interact via a
communication bus, such as controller area network (CAN) or
FlexRay. An SBW system provides various advantages over
mechanical steering systems. For example, an SBW system
eliminates the risk of steering column entering the cockpit in

the event of a frontal crash. Since steering column is one of
the heaviest components in the vehicle, removing the steering
column reduces the vehicle’s weight and therefore lessens fuel
consumption.

Our SBW case study architecture leverages multi-core
ECUs to assimilate dependability. The architecture consists of
two multi-core (dual-core or triple-core) hand wheel ECUs
(HW ECU1 and HW ECU2) and two multi-core (dual-core
or triple-core) front axle actuator ECUs (FAA ECU1 and
FAA ECU2). Each of the ECUs is connected to CAN. Our
SBW architecture consists of three hand wheel sensors (hws1,
hws2, and hws3) that are placed near the hand wheel to
measure the driver’s requests in terms of hand wheel angle,
hand wheel torque, and hand wheel speed. Similarly, three
front axle sensors (fas1, fas2, and fas3) measure the front axle
position. Both the hand wheel sensors (the front axle sensors)
are connected to the HW ECUs (FAA ECUs) by point-to-point
links. Two front axle actuator (FAA) motors (FAA motor 1 and
FAA motor 2) operate in active redundancy on the front axle
while two hand wheel (HW) motors (HW motor 1 and HW
motor 2) operate in active redundancy on the hand wheel.

An SBW system aims to provide two main services [17]:
1) front axle control (FAC) that controls the wheel direction
in accordance with the driver’s request, and 2) hand wheel
force feedback (HWF) that provides a mechanical-like force
feedback to the hand wheel. In our SBW architecture, the
FAC function’s implementation utilizes HW ECU1 and FAA
ECU1 whereas the HWF function’s implementation utilizes
HW ECU2 and FAA ECU2.

B. Markov Models

Cybercar systems can be modeled by Markov chains
consisting of various states. When a failure occurs in a
given state, the system’s next operating state is determined
completely by its current state regardless of how the system
entered the current state. For illustration purposes, this section
discusses Markov modeling formulation of soft errors for an
SBW system as a case study.

Fig. 1 depicts Markov model for transient faults (soft
errors) in an SBW system with triple-core HW ECU1 and
FAA ECU1. The system can detect two soft errors and correct
one soft error if majority voting is performed at the end of
computation as in FT-RMT-TMR. Each state (i, j) represents
the state when i processor cores of HW ECU1 and j processor
cores of FAA ECU1 are functioning without incurring any
soft error. The solid arrows represent state changes due to
soft errors in HW ECU1 and FAA ECU1 processor cores and
dotted arrows represent recovery from soft errors. The initial
state is (3, 3) in which the three processor cores of both HW
ECU1 and FAA ECU1 are functioning without incurring any
soft error.

In Fig. 1, λs he and λs fe denote the failure rates of HW
ECU1 and FAA ECU1 due to soft errors where the failure
times due to soft errors are exponentially distributed. μxhe and
μxfe where x ∈ {0, 1, 2} denote the soft error recovery rates
of HW ECU1 and FAA ECU1, respectively, as described in
detail below. The differential equations describing this Markov



Fig. 1: Markov model for soft errors in an SBW system with
triple-core HW ECU1 and FAA ECU1.

model are given as:

P ′
(3,3)(t) = −3λs heP(3,3)(t)− 3λs feP(3,3)(t)

+μ2heP(2,3)(t) + μ1heP(1,3)(t)

+μ0heP(0,3)(t) + μ2feP(3,2)(t)

+μ1feP(3,1)(t) + μ0feP(3,0)(t)

...
P ′
(0,0)(t) = λs heP(1,0)(t) + λs feP(0,1)(t)

−μ0heP(0,0)(t)− μ0feP(0,0)(t) (5)

Since an SBW system can recover from soft errors during
operation, Markov models for transient faults include recovery
rates. We point out that μxhe = μTMR

xhe and μxfe = μTMR
xfe

in Fig. 1 and Eq. 5 where x ∈ {0, 1, 2} (recovery rates are
denoted as μxhe and μxfe for conciseness). The soft error
recovery rates for TMR configuration (Fig. 1) are given by the
following equations:

μTMR
2he = 1/(tTMR

d1

HW

+ tTMR
c1
HW

) (6)

where μTMR
2he denotes the soft error recovery rate of HW ECU1

from states (2, 3), (2, 2), (2, 1), and (2, 0); tTMR
d1

HW

denotes the
time to detect a single soft error in TMR configuration for
HW ECU1 and tTMR

c1
HW

denotes the time to correct a single
soft error in TMR configuration for HW ECU1. We point out
that the error detection time in any of our implemented FT
configuration in D2CyberSoft (Section IV) includes the time
to run acceptance tests to further verify the computation’s
correctness. For states (i, j) s.t. i, j ≥ 2, FT mechanisms
(e.g., comparison of outputs from redundant threads) exist in
addition to acceptance tests for soft error detection whereas for
states (i, j) s.t. i, j ≤ 1, acceptance tests are the only means
for error detection. Similarly,

μTMR
1he = 1/(tTMR

d2

HW

+ tTMR
c2
HW

) (7)

where μTMR
1he denotes the soft error recovery rate of HW

ECU1 from states (1, 3), (1, 2), (1, 1), and (0, 1); tTMR
d2

HW

denotes
the time to detect two soft errors in TMR configuration and

tTMR
c2
HW

denotes the time to correct two soft errors in TMR
configuration for HW ECU1. We point out that two soft errors
are corrected by rerunning the program in TMR configuration
and determining the correct output through majority voting.
Similarly,

μTMR
0he = 1/(tTMR

d3

HW

+ tTMR
c3
HW

) (8)

where μTMR
0he denotes the soft error recovery rate of HW

ECU1 from states (0, 3), (0, 2), (0, 1), and (0, 0); tTMR
d3

HW

denotes
the time to detect three soft errors in TMR configuration
and tTMR

c3
HW

denotes the time to correct three soft errors in
TMR configuration for HW ECU1. The three soft errors
are detected by comparisons and acceptance tests, and are
corrected by rerunning the program in TMR configuration and
determining the correct output through majority voting. The
soft error recovery rate equations for FAA ECU1 can be written
similarly.

Solving differential equations (Eq. 5) for the Markov model
depicted in Fig. 1 yields solution for P(i,j)(t), ∀ i, j ∈
{0, 1, 2, 3}. The (point) availability, which is the probability
that the system is operational at time t, of the FAC function of
the SBW system with triple-core HW ECU1 and FAA ECU1,
ATMR

SBW FAC(t), is given by:

ATMR
SBWFAC

(t) = P(3,3)(t) + P(2,3)(t) + P(1,3)(t)

+P(3,2)(t) + P(2,2)(t) + P(1,2)(t)

+P(3,1)(t) + P(2,1)(t) + P(1,1)(t) (9)

Fig. 2 depicts Markov model for transient faults in an
SBW system with dual-core HW ECU1 and FAA ECU1. The
differential equations describing this Markov model are:

P ′
(2,2)(t) = −2λs heP(2,2)(t)− 2λs feP(2,2)(t)

+μ1heP(1,2)(t) + μ0heP(0,2)(t)

+μ1feP(2,1)(t) + μ0feP(2,0)(t)

...
P ′
(0,0)(t) = λs heP(1,0)(t) + λs feP(0,1)(t)

−μ0heP(0,0)(t)− μ0feP(0,0)(t) (10)

We point out that μxhe = μDMR
xhe and μxfe = μDMR

xfe in Fig. 2
and Eq. 10 where x ∈ {0, 1} (recovery rates are denoted as
μxhe and μxfe for conciseness). The soft error recovery rates
for DMR configuration (Fig. 2) are given by the following
equations:

μDMR
1he = 1/(tDMR

d1

HW

+ tDMR
c1
HW

) (11)

where μDMR
1he denotes the soft error recovery rate of HW ECU1

from states (1, 2), (1, 1), and (0, 1); tDMR
d1

HW

denotes the time to
detect a single soft error in DMR configuration for HW ECU1
and tDMR

c1
HW

denotes the time to correct a single soft error in
DMR configuration for HW ECU1. Similarly,

μDMR
0he = 1/(tDMR

d2

HW

+ tDMR
c2
HW

) (12)

where μDMR
0he denotes the soft error recovery rate of HW ECU1

from states (0, 2) and (0, 1); tTMR
d2

HW

denotes the time to detect
two soft errors in DMR configuration for HW ECU1 and
tDMR
c2
HW

denotes the time to correct two soft errors in DMR



Fig. 2: Markov model for soft errors in an SBW system with
dual-core HW ECU1 and FAA ECU1.

configuration for HW ECU1. The soft error recovery rate
equations for FAA ECU1 can be written similarly.

Solving Eq. 10 with initial conditions P(2,2)(0) = 1,
P(1,2)(0) = 0, P(2,1)(0) = 0, P(1,1)(0) = 0, P(0,2)(0) = 0,
P(0,1)(0) = 0, P(2,0)(0) = 0, and P(1,0)(0) = 0 yields the
solution for P(i,j)(t), ∀ i, j ∈ {0, 1, 2}. The point availability
of the FAC function of the SBW system with dual-core ECUs,
ADMR

SBW FAC(t), is given by:

ADMR
SBWFAC

(t) = P(2,2)(t) + P(1,2)(t)

+P(2,1)(t) + P(1,1)(t) (13)

Markov model for permanent faults in an SBW system with
single-core HW ECU1 and FAA ECU1 is a subset of Fig. 2
with (1,1), (0,1), (1,0), and (0,0) as the only valid states. The
point availability of the FAC function of the SBW system with
single-core ECUs, ASBW FAC(t), is given by:

ASBWFAC
(t) = P(1,1)(t) (14)

Markov models for other implemented FT designs in
D2CyberSoft (Section IV) can be developed similarly.

VI. EVALUATION RESULTS & INSIGHTS

In this section, we present availability evaluation results
and insights obtained from D2CyberSoft. In our evaluations,
we calculate repair rates (e.g., Eq. 6) corresponding to
error detection and correction times for security related
computations (i.e., SHA-2-based message authentication and
AES-128 encryption) in cybercars. The execution times are
estimated for a 32-bit embedded processor operating at 200
MHz (e.g., Freescale’s MPC5746M [18]) from the measured
clock cycles. We obtain these timings for security primitives
because both security and dependability are imperative for
cybercar design. We note that some aberrations in the presented
results are due to slight inaccuracies in SHARPE calculations.

ECU’s Soft Failure Rate (SFR) Calculation: For our Markov
modeling analysis, we need to calculate ECUs’ SFR. We model
Freescale’s MPC5746M ECU [18] as closely as possible for
SFR calculation. The MPC5746M ECU consists of e200z4
computational cores that can operate up to 200 MHz [19][18].

The MPC5746M ECU consists of two IEUs, one IFU, one
FPU, 32 general purpose registers and 110 additional registers,
8 KB instruction cache, 4 KB data cache, 16 KB instruction
RAM, and 64 KB data RAM [19][18].
We assign the raw soft error rate of different ECU

components as [20]: SRAM = 1 × 106 FIT per bit, DRAM
= 1 × 101 FIT per bit, and register file = 1 × 105 FIT per
register. The raw SERs of IFU, IEU, and FPU are set to be
(1/30)x, (1/10)x, and (1/10)x, respectively, of the raw SER
of SRAM [20]. The raw SFR of a component is calculated
by multiplying the raw SER of the component with the AVF
for that component. We assign the AVFs for different ECU
components as [6][21]: level one (L1) data bits = 0.18, L1
tag bits = 0.23, register file = 0.23, IFU = 0.14, IEU = 0.04,
and FPU = 0.04. The MPC5746M ECU’s overall SFR is
calculated by the summation of SFRs of ECU’s components
[7] (calculations are not shown here for brevity).

Effect of FT Design on Availability: Design of an automotive
system has a significant impact on the system’s availability.
Table I presents point availability evaluations for different
SBW designs obtained form our Markov models when hazard
penalty th = 1020 ·ts and λs he = λs fe = 2.088167×10−4/h.
Results reveal that the point availability of SBW designs that
leverage FT techniques is considerably higher than that of an
NFT design at all time instants. For example, SBW designs
leveraging either of FT-RMT, FT-RMT-QED, FT-RMT-TMR,
and FT-RMT-TMR-QED provide 39x higher availability on
average than an NFT design when t = 8,760 hours and λs he

= λs fe = 2.088167×10−4/h. Results also show that FT-RMT-
QED enables 0.00054% higher availability than FT-RMT on
average. The impact of FT designs on availability for various
SFRs is further discussed below.

Effect of Elapsed Time on Availability: Point availability
of a system depends on the point of time the availability is
evaluated. Results indicate that availability decreases as the
elapsed time increases. For example, the point availability at
t = 87,600 hours is 29.2% less than the point availability at
t = 26,280 hours for an NFT SBW system when λs he =
λs fe = 2.088167× 10−6/h. Results reveal that the effect of
elapsed time on point availability is more severe for an NFT
design as compared to the designs with FT. For example, the
point availability decreases by 11.6% for an NFT SBW design
whereas the point availability decreases by 3.74 × 10−5%,
8.63×10−4%, and 3.55×10−4% for FT-RMT, FT-RMT-QED,
and FT-RMT-TMR, respectively, as the time elapses from t
= 17,520 hours to t = 43,800 hours when λs he = λs fe =
2.088167× 10−6/h.

Effect of FT Designs on Availability for Various Soft
Failure Rates: SFRs have a significant impact on the
availability attainable by various designs. Table II presents
point availability evaluations obtained from our Markov
models for NFT and FT designs for different SFRs at t =
17,520 hours ≈ 2 years when hazard penalty th = 1020 · ts.
Results reveal that the designs leveraging FT techniques enable
higher availability than an NFT design for all SFRs. For
example, an SBW design leveraging FT-RMT, FT-RMT-QED,
FT-RMT-TMR, and FT-RMT-TMR-QED provide 150,457%,
150,459%, 150,458%, and 150,459% higher availability than
an NFT design when t = 17,520 hours and ECUs’ SFR is



TABLE I: Point availability for various SBW designs when hazard penalty th = 1020 · ts and SFR = 2.088167× 10−4/h.
t (hours) NFT FT-RMT FT-RMT-QED FT-RMT-TMR FT-RMT-TMR-QED

100 h 0.959,096,733,530 0.999,999,926,600 0.999,999,988,340 0.999,999,950,100 1.000,000
4,380 h = 6 months 0.160,536,444,650 0.999,996,781,630 0.999,999,489,220 0.999,997,814,370 1.000,000
8,760 h = 1 year 0.025,771,950,062 0.999,993,563,180 0.999,998,978,450 0.999,995,628,750 1.000,000
17,520 h = 2 years 6.6419 × 10−4 0.999,987,126,300 0.999,997,956,900 0.999,991,257,51 1.000,000
35,040 h = 4 years 4.4115 × 10−7 0.999,974,252,610 0.999,995,913,800 0.999,982,515,070 1.000,000
52,560 h = 6 years 2.9300 × 10−10 0.999,961,379,010 0.999,993,870,700 0.999,973,772,700 1.000,000

TABLE II: Point availability for SBW designs at t = 17,520 hours for different SFRs when hazard penalty th = 1020 · ts.
SFR NFT FT-RMT FT-RMT-QED FT-RMT-TMR FT-RMT-TMR-QED

2.088167 × 10−8/h 0.999,268,571,100 0.999,995,238,190 1.000,000 1.000,000 1.000,000
2.088167 × 10−4/h 6.6419 × 10−4 0.999,987,126,300 0.999,997,956,900 0.999,991,257,510 1.000,000
2.088167 × 10−1/h 0.000,000 0.998,023,281,050 0.998,422,498,320 0.999,991,574,490 0.999,642,502,450
2.088167 × 101/h 0.000,000 2.5325 × 10−9 1.4283 × 10−7 0.999,358,712,300 0.999,219,903,940
2.088167 × 102/h 0.000,000 0.000,000 0.000,000 0.528,522,849,330 0.458,452,777,070

TABLE III: Steady-State availability for SBW designs for different SFRs when hazard penalty th = 106 · ts.
SFR Without FT FT-RMT FT-RMT-QED FT-RMT-TMR FT-RMT-TMR-QED

2.088167 × 10−1/h 0.949,890,935,910 0.999,999,981,010 0.999,999,984,260 0.999,999,998,810 0.999,999,998,120
2.088167 × 100/h 0.629,517,133,050 0.999,998,112,670 0.999,998,437,710 0.999,999,985,070 0.999,999,939,430
2.088167 × 101/h 7.7014 × 10−2 0.999,811,639,610 0.999,844,888,430 0.999,999,178,750 0.999,998,869,670
2.088167 × 102/h 1.3684 × 10−3 0.981,491,294,560 0.984,713,859,350 0.999,989,021,290 0.999,978,608,980
2.088167 × 103/h 1.4643 × 10−5 0.267,136,035,390 0.319,139,704,600 0.992,647,515,820 0.987,875,687,160

2.088167×10−8/h. Results divulge that FT-RMT-QED enables
0.0011% and 0.04% higher availability than FT-RMT when
ECUs’ SFRs are 2.088167× 10−4/h and 2.088167× 10−1/h,
respectively. Results show that FT-RMT-TMR enables higher
availability than FT-RMT and FT-RMT-QED for various SFRs.
For example, FT-RMT-TMR enables 22% higher availability
than FT-RMT and 17% higher availability than FT-RMT-QED
when t = 17,520 hours and SFR is 2.088167/h.

Results reveal that sophisticated FT techniques become
imperative for designs that are to be deployed in harsh
environments susceptible to high SERs. Results in Table II
indicate that as SFR increases (i.e., 2.088167 × 101/h and
2.088167 × 102/h), only designs that leverage FT-RMT-
TMR and FT-RMT-TMR-QED provide reasonable availability
whereas availability furnished by other designs including FT-
RMT and FT-RMT-QED approaches zero. Interestingly FT-
RMT-TMR-QED is not able to provide higher availability
than FT-RMT-TMR on many occasions due to additional
overhead associated with the former. For example, FT-RMT-
TMR enables 0.035%, 0.014%, and 15.3% higher availability
than FT-RMT-TMR-QED when ECUs’ SFRs are 2.088167×
10−1/h, 2.088167×101/h, and 2.088167×102/h, respectively,
and t = 17,520 hours.

Effect of Hazard Penalty on Availability: Hazard penalty,
which quantifies the penalty associated with the acceptance
tests’ failure for error detection, impacts availability. Results
reveal that availability increases in general for all FT designs
as the hazard penalty decreases, however, this availability
increase is more conspicuous for designs with no or less
FT. Furthermore, this availability increase with decreasing
hazard penalties becomes more noticeable as SFR increases.
For example, availability increases by 794,473% for FT-RMT-

QED as th decreases from 1015 · ts to 106 · ts when SFR is
2.088167 × 102/h and t = 100 hours. Similarly, availability
increases by 0.36% and 0.44% for FT-RMT-TMR and FT-
RMT-TMR-QED, respectively, as th decreases from 1015 · ts
to 106 · ts when SFR is 2.088167× 102/h and t = 100 hours.
We note that hazard penalty decrease can be interpreted as
an improvement in the acceptance tests’ soft error detection
capability, and consequently this hazard penalty decrease
results in an increase in the availability furnished by a given
FT design. Furthermore, assignment of higher hazard penalty
for high ASIL levels in D2CyberSoft signifies the criticality
of the risk associated with the implemented function, which
requires sophisticated FT designs that do not depend solely on
acceptance tests for error recover.

Steady-State Availability Evaluations: We also evaluate
steady-state availability (i.e., availability as t → ∞) imparted
by our implemented SBW designs. Table III presents steady-
state availability evaluations for different SFRs when th =
106 · ts. These steady-state availability evaluations verify the
trends observed in point availability assessments discussed
in previous subsections. For example, FT-RMT, FT-RMT-
QED, FT-RMT-TMR, and FT-RMT-TMR-QED enable 59%
and 1,198% higher availability on average than an NFT design
when ECU’s SFRs are 2.088167/h and 2.088167 × 101/h,
respectively, and th = 106 · ts. The steady-state availability
evaluations verify that sophisticated FT techniques (e.g., FT-
RMT-QED) render high availability than the designs with
fewer redundancy. For instance, FT-RMT-QED and FT-RMT-
TMR impart 19.5% and 272% higher availability, respectively,
than FT-RMT when ECU’s SFR is 2.088167 × 103/h.
Results further verify that designs leveraging TMR become
paramount as SFR increases. For example, FT-RMT-TMR
imparts 211% higher availability than FT-RMT-QED when



ECU’s SFR is 2.088167 × 103/h. FT-RMT-TMR provides
0.48% higher availability than FT-RMT-TMR-QED because
of additional overhead associated with QED in FT-RMT-
TMR-QED, however, FT-RMT-TMR-QED provides 210%
higher availability than FT-RMT-QED when ECU’s SFR is
2.088167× 103/h.
We observe that the designs that leverage more

sophisticated FT techniques such as FT-RMT-QED and FT-
RMT-TMR-QED do not necessarily increase the system
availability. Results indicate that FT-RMT-TMR-QED can
actually decrease the system availability because of the
overhead associated with the technique. We clarify that
although FT-RMT-TMR-QED can decrease system availability
in certain instances, however, the technique is able to quickly
detect and correct computational errors that help in meeting
hard real-time deadlines. Hence, both real-time deadlines and
desired availability needs to be considered in the design of
safety-critical automotive systems.

VII. CONCLUSIONS
In this paper, we propose D2CyberSoft—a design

automation tool for cybercars that analyzes soft errors
and facilitate cybercar designers in selecting designs to
alleviate soft errors’ impact on availability with minimum
cost overhead. We formulate Markov models that provide
basis for D2CyberSoft for various fault-tolerant (FT) designs
including FT by redundant multi-threading (FT-RMT), FT-
RMT enhanced with quick error detection (FT-RMT-QED),
FT-RMT with triple modular redundancy (FT-RMT-TMR),
and FT-RMT-TMR enhanced with quick error detection (FT-
RMT-TMR-QED). We analyze availability of these FT designs
for different soft error rates and hazard penalties using
D2CyberSoft.
Results reveal that SBW designs leveraging either of

FT-RMT, FT-RMT-QED, FT-RMT-TMR, and FT-RMT-TMR-
QED provide 39x higher availability on average than a non-
fault-tolerant (NFT) design when elapsed time t = 8,760
hours and soft failure rate (SFR) is 2.088167 × 10−4/h.
Furthermore, FT-RMT-QED enables 0.04% higher availability
than FT-RMT, which depicts the advantage of quick error
detection (QED) for dual modular redundant (DMR) designs,
when ECUs’ SFR is 2.088167 × 10−1/h. Results divulge
that designs leveraging TMR become more promising at high
SFRs as compared to the designs with fewer redundancy.
Interestingly, FT-RMT-TMR-QED can actually decrease the
system availability as compared to FT-RMT-TMR because of
the additional overhead associated with QED, however, FT-
RMT-TMR-QED still provides higher availability than FT-
RMT-QED. Results reveal that early error detection techniques
such as QED, which can be beneficial in meeting real-time
deadlines, may become detrimental for availability, especially
for designs with redundancy higher than DMR. Results
obtained from D2CyberSoft suggest that an optimal cybercar
design should incorporate redundancy considering acceptable
availability, desired lifetime, cost, expected soft error rates,
real-time deadlines, and the safety criticality of the function
implemented by the design.

ACKNOWLEDGMENTS
This work was supported by the Office of Naval Research

(ONR R17460) and SRC GRC Freescale grant (R65000).

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ONR and the SRC GRC.

REFERENCES
[1] D. Skarin and J. Karlsson, “Software Implemented Detection and

Recovery of Soft Errors in a Brake-by-Wire System,” in Proc. of EDCC,
May 2008.

[2] ReliaSoft, “ReliaSoft—Empowering the Reliability Professional,” 2013.
[Online]. Available: http://www.reliasoft.com/

[3] SHARPE, “The SHARPE Tool & the Interface (GUI),” 2013. [Online].
Available: http://people.ee.duke.edu/∼chirel/IRISA/sharpeGui.html

[4] OSATE, “OSATE—Open Source Tools,” in Software Engineering
Institure, Carnegie Mellon University, 2013. [Online]. Available:
http://www.sei.cmu.edu/dependability/tools/osate/index.cfm

[5] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of Scrubbing
Recovery-Techniques for Memory Systems,” IEEE Trans. on Reliability,
vol. 39, no. 1, pp. 114–122, April 1990.

[6] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” in Proc. of IEEE/ACM
MICRO-36, December 2003.

[7] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Architecture-Level Soft
Error Analysis: Examining the Limits of Common Assumptions,” in
Proc. of IEEE DSN, June 2007.

[8] J. A. Blome, S. Gupta, S. Feng, S. Mahlke, and D. Bradley, “Cost-
Efficient Soft Error Protection for Embedded Microprocessors,” in Proc.
of ACM CASES, October 2006.

[9] E. J. Ossi, “Soft-error mitigation at the architecture-level using berger
codes for error detection,” Master’s thesis, EE Dept., Vanderbilt Uni-
versity, Nashville, Tennessee, 2011.

[10] F. Wang, “Soft error rate determination for nanometer cmos vlsi
circuits,” Master’s thesis, ECE Dept., Auburn University, Alabama,
2008.

[11] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An Efficient
Static Algorithm for Computing the Soft Error Rates of Combinational
Circuits,” in Proc. of IEEE DATE, March 2006.

[12] R. Rajaraman, J. S. Kim, N. Vijaykrishnan, Y. Xie, and M. J. Irwin,
“SEAT-LA: A Soft Error Analysis Tool for Combinational Logic,” in
Proc. of IEEE International Conference on VLSI Design, January 2006.

[13] A. Munir and F. Koushanfar, “D2Cyber: A Design Automation Tool for
Dependable Cybercars,” in Proc. of IEEE/ACM Design, Automation &
Test in Europe (DATE), Dresden, Germany, March 2014.

[14] A. M. Johnson and M. Malek, “Survey of Software Tools for Evaluating
Reliability, Availability, and Serviceability,” ACM Computing Surveys,
vol. 20, no. 4, pp. 227–269, December 1988.

[15] H. Lambert, “Use of Fault Tree Analysis for Automotive Reliability
and Safety Analysis,” in SAE 2004, March 2004.

[16] T. Hong, Y. Li, S.-B. Park, D. Mui, D. Lin, Z. A. Kaleq, N. Hakim,
H. Naeimi, D. S. Gardner, and S. Mitra, “QED: Quick Error Detection
Tests for Effective Post-Silicon Validation,” in Proc. of IEEE ITC,
November 2010.

[17] C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, Design
of Automotive X-by-Wire Systems. The Industrial Communication
Technology Handbook CRC Press, 2005.

[18] Freescale, “MPC5746M: Qorivva 32-bit Multicore MCU for Powertrain
Applications,” 2013. [Online]. Available: http://www.freescale.com/
webapp/sps/site/prod summary.jsp?code=MPC5746M

[19] Freescale, “e200z4 Power Architecture Core Reference Manual,”
2009. [Online]. Available: http://www.freescale.com/files/32bit/doc/
ref manual/e200z4RM.pdf

[20] C. Slayman, “Soft Error Trends and Mitigation Techniques in Memory
Devices,” in Proc. of IEEE RAMS, January 2011.

[21] W. Zhang, X. Fu, T. Li, and J. Fortes, “An Analysis of Microarchitecture
Vulnerability to Soft Errors on Simultaneous Multithreaded Architec-
tures,” in Proc. of IEEE ISPASS, April 2007.


