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The transformation of age-old farming practices through the integration of digitization and automation has
sparked a revolution in agriculture that is driven by cutting-edge computer vision and artificial intelligence
(AI) technologies. This transformation not only promises increased productivity and economic growth, but
also has the potential to address important global issues such as food security and sustainability. This survey
paper aims to provide a holistic understanding of the integration of vision-based intelligent systems in various
aspects of precision agriculture. By providing a detailed discussion on key areas of digital life cycle of crops,
this survey contributes to a deeper understanding of the complexities associated with the implementation of
vision-guided intelligent systems in challenging agricultural environments. The focus of this survey is to explore
widely used imaging and image analysis techniques being utilized for precision farming tasks. This paperfirst dis-
cusses various salient cropmetrics used in digital agriculture. Then this paper illustrates the usage of imaging and
computer vision techniques in various phases of digital life cycle of crops in precision agriculture, such as image
acquisition, image stitching and photogrammetry, image analysis, decision making, treatment, and planning.
After establishing a thorough understanding of related terms and techniques involved in the implementation
of vision-based intelligent systems for precision agriculture, the survey concludes by outlining the challenges
associated with implementing generalized computer vision models for real-time deployment of fully
autonomous farms.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Vision-based intelligent systems havemadeway to practically every
aspect of modern human life. These systems combine computer vision,
artificial intelligence (AI), andmachine learning technologies and allow
machines to mimic human visual and cognitive abilities to make in-
formed decisions about the task at hand. Computer vision technology
is used to process and interpret visual information from the surrounding
environment while the artificial intelligence (AI) technologies along
with machine learning algorithms are used for recognizing patterns
and predicting actions. These intelligent systems improve performance
through learning over time. Automated vision-based systems have rev-

olutionized every industry since the late 20th century. Research on ma-
chines with the ability to interpret visual information started during
1950s. An example of one of the earliest intelligent machines is Shakey
(DARPA, 2024), a groundbreaking robot developed at Stanford Research
@fau.edu (A. Munir), waqarshahid.

lsevier B.V. on behalf of KeAi Comm
Institute in the late 1960s. 1970s witnessed the origination of optical
character recognition technology. In 1980s and 1990s, focus shifted on
the application of machine learning techniques in the development of
vision-based intelligent systems. However, these initial systems
remained comparatively elementary, based mostly on rule-based
approaches (Edem Gold, 2023). With the advancement in powerful
computing resources and computer vision techniques like object recog-
nition and image segmentation in 2000s, and advent of deep neural net-
works in 2010s, performance of vision-based systems has increased
significantly. The intersection of the vision-based intelligent systems
and robotics domains give rise to novel smart machines that have the
ability to perceive and interact with their environment and perform
tasks in a manner similar to humans.

There are numerous challenges for implementing intelligent sys-
tems in agricultural sector considering thewidely increasingworld pop-
ulation, declining arable land, and shortage of labor force. Pest damage
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as well as complex and unpredictable environment also add to the chal-
lenges faced by farmers (Marks, 2023). Farmers need a variety of infor-
mation to make necessary decisions about the crops. Traditionally, this
is done by physically monitoring the plants by the farmers at various
times of crop development making it a cumbersome process requiring
great focus and expertise. Subjective process of crop data extraction
can be standardized by replacing manual extraction by automated sys-
tems based on latest AI and computer vision technologies. Focus of the
present day research in agricultural sector is the development of intelli-
gent and automated vision-guided systems that can replace manual
processes and are more precise and accurate and free from human
error factors. A vision-guided intelligent system must be able to gather
relevant information without human intervention consequently reduc-
ing labor cost. With the data about current growth stage of the crop,
such a system can be helpful for the timely and precise application of
fertilizers and targeted spraying of insecticides/herbicides for better
plant health and quality of produce thus increasing environmental sus-
tainability and food security. A vision-guided intelligent systemwill also
help in tracking the growth stages of the crop and making timely deci-
sion about harvest for better yield.

This article presents a comprehensive overview of the digital life
cycle of crops in precision agriculture.We address various stages of dig-
ital agriculture, including image acquisition, image stitching, image
analysis, decision-making with machine learning, and crop treatment
and farm planning. Our motivation stemmed from the observation
that current literature often focuses on individual areas without provid-
ing a holistic view or detailed explanation of the entire process involved
in the implementation of digital agriculture. Many surveys concentrate
on literature reviews within specific areas. For example, (Liu andWang,
2021; Shafik et al., 2023; Jackulin and Murugavalli, 2022; Ouhami et al.,
2021; Chithambarathanu and Jeyakumar, 2023) summarize studies on
pest and disease detection in crops. Sethy et al. (2022) and Lu et al.
(2020) discuss hyperspectral imaging applications in agriculture. Luo
et al. (2023) specifically focus on the application of computer vision
and deep learning in the context of Controlled Environment Agriculture
(CEA) where CEA is a form of agriculture that involves growing plants
within a controlled environment like greenhouses and plant factories
Wagner et al. (2021). While the review by (Patrício and Rieder, 2018)
explore key areas such as disease detection, grain quality assessment,
and phenotyping, their work is limited to exploring the literature re-
view for selective grain crops including maize, rice, wheat, soybean,
and barley. Tian et al. (2020) have conducted a literature review focus-
ing on key application areas of precision agriculture, such as growth
monitoring, disease control, harvesting, quality testing, and farm man-
agement, in the context of agricultural automation. Although they dis-
cuss image analysis and decision-making techniques in these areas,
their review lacks a comprehensive overview of the digital agriculture
pipeline, including its various stages. The approach of Kakani et al.
(2020) highlights the significance of computer vision and AI in the agri-
culture and food industry. While the authors discuss challenges, recom-
mendations, and implications of incorporating these technologies into
farming, global policies, and investments for sustainable food produc-
tion, their main focus is to examine various scenarios and use cases
where machine learning, machine vision, and deep learning are applied
globally, particularly focusing on their sustainability aspects. This survey
aims to bridge the gap in current literature by offering a thorough explo-
ration of the complete digital agriculture pipeline, highlighting chal-
lenges in each stage/area of the pipeline. Additionally, we discuss
widely used crop metrics in digital agriculture. Unlike most surveys
that concentrate on specific applications of computer vision in certain
areas, our paper provides a comprehensive understanding of the digital
life cycle of crops in precision agriculture. We aim for our survey to pro-
vide researchers with a concise overview of the digital agriculture pipe-
line, sparking inspiration for new research and development in relevant
areas.
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Fig. 1 gives a detailed pipeline of the life cycle of crops in digital ag-
riculture. The pipeline starts with image acquisition, employing various
means for capturing the crop view, thereby replicating and enhancing
the farmer's vision. These images are then processed using computer
vision techniques and may either be directly used for analysis and
data extraction or used for generating panoramic views for digital map-
ping and analyzing afterwards. After data and information extraction,
various machine learning and AI techniques are used to generate pre-
dictions and estimates relevant to the problem at hand. These analyzed
results and estimations are then utilized by farmers to formulate
effective plans and treatments for crops aimed at maximizing their
yield. This survey discusses the digital life cycle of crops, from image
acquisition to planning and decision-making, along with relevant
state-of-the-art methods of implementing the vision-guided intelligent
systems. Focus of this survey is to compare the methodologies adopted
for problem areas related to precision agriculture. Following research
questions were kept in mind while performing review of articles: Q1:
What type of imaging technology was employed by the researchers?
Q2: What techniques were used for crop data extraction and compari-
son? Q3: What were the significant outcomes and results of these
studies? The research articles were gathered from various Scopus-
indexed peer-reviewed journals and conference proceedings. Consider-
ing the fast pace of technological advancements, only research articles
from the last decade that is, after 2013were considered. All the selected
articles are summarized and presented in Sections 3 to 8. Before delving
into a detailed review of existing research on vision-based intelligent
systems in precision agriculture, it is essential to introduce certain key
cropmatrices that arewidely used in precision agriculture research. Un-
derstanding thesematrices is crucial to grasp the variation of their usage
in the related research. These crop metrics are described in Section 2.
Overview of main sections and subtopics covered in the survey are pre-
sented in Fig. 2.

2. Crop metrics for digital agriculture

Crop metrics are the statistics used to measure or quantify crop
health, characteristics, and properties. A key subset of these metrics
are Vegetation Indices (VIs), which are spectral imaging transforma-
tions used for estimating multiple crop/vegetation properties. VIs are
derived by combining two or more spectral bands of electromagnetic
spectrum that enhance vegetation properties and enable credible spa-
tial and temporal inter-comparisons of terrestrial photosynthetic activ-
ity, variations in canopy structure, and various plant characteristics
(Huete et al., 2002). This section provides an overview of selected
cropmetrics and VIs commonly applied in precision agriculture, aiming
to clarify any discrepancies in their portrayal found in the literature.
Table 1 provides a summary of VIs along with their applications in
smart agriculture and precision farming. While the list presented here
is not exhaustive, interested readers can find more information in
(IDB, 2023).

2.1. Normalized difference vegetative index (NDVI)

NDVI is the most commonly used vegetation health index. It is used
tomeasure the amount and vigor of vegetation on the land surface, and
is useful to quantify vegetation greenness, vegetation density, and yield.
NDVI can also be used to evaluate changes in plant health. NDVI spatial
composite images are helpful in distinguishing green vegetation from
bare soil (USDA, 2023). The formula for calculating NDVI is given by
the Eq. (1) (Huete et al., 2011).

NDVI NIR − R NIR R 1

where NIR=800 nmand R=670 nm. The range of NDVI values is from
−1.0 to 1.0, where negative values indicate clouds and water, positive



Fig. 1. Digital life cycle of crops in precision agriculture.
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values near zero signify bare soil, higher positive values from 0.1 to 0.5
represent sparse vegetation, and even higher positive values from 0.6 to
1 represent dense green vegetation (USDA, 2023).

2.2. Normalized difference water index (NDWI)

It is used to detect water stress in plants (Cai Gao, 1996). The for-
mula for calculating NDWI is given by Eq. (2).
Fig. 2. Overview of main sections and subtopics in the survey.
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NDWI NIR − SWIR NIR SWIR 2

where NIR= 860 nm and SWIR= 1240 nm. The range of NDWI values
is from −1.0 to 1.0 where higher values correspond to higher water
content in vegetation. NDWI valuewill decrease for an increase inwater
stress (NDWI – EUROPE, P.F.S, 2011).

2.3. Crop water stress index (CWSI)

It is an indicator of water stress in crops. The temperature of plant
leaf is determined by the extent of soil moisture and ambiant condi-
tions. Transpiration is the cause of drop in canopy temperature. The con-
cept behind CWSI is that the decline in soil moisture causes a decline in
transpiration hence increasing the canopy temperature. By measuring
the relative transpiration rate of the plant using CWSI, water stress
can be estimated. The formula (Agam et al., 2013) for calculating
CWSI is given by Eq. (3).

CWSI Tc − Tw Td − Tw 3

where Tc refers to the average crown temperature of a plant, Tw is the
temperature of a non stressed leaf while Td is the temperature of a
stressed leaf. The range of CWSI is 0 to 1 where higher value indicates
a low water stress level.

2.4. Green normalized difference vegetation index (GNDVI)

It is similar to NDVI but uses green band instead of red. It is more
sensitive to photosynthetic activity and is commonly used for water
and nitrogen content measurement. The formula (Gitelson et al.,
1996) is given in Eq. (4).

GNDVI NIR − G NIR G 4

where NIR= (780 nm to 1400 nm) and G= (540 nm to 570 nm) is the
green band of electromagnetic spectrum. The range of GNDVI values
range from −1.0 to 1.0, where values between −1 to 0 signify water
and bare soil, while values between 0 and 1 represent sparse to dense
vegetation.



Table 1
Vegetation Indices.

VI with Formula ⁎Spectral Bands (nm) Applications Reference

NDVI = (NIR-R)/(NIR + R) R[655–665] & NIR[835–865]; R[670] & NIR[800]; R
[575–675] & NIR[810–890]; R[615–685] & NIR
[755–805]; R[640–680] & NIR[770–810]

Vegetation land cover mapping; Yield
estimation; Vegetation density estimation;
Nitrogen & water stress; Biotic stress detection

(Essaadia et al., 2022); (Gong et al.,
2018); (Sabah et al., 2022); (Maresma
et al., 2016); (Marin et al., 2021)

EVI = 2.5⁎ (NIR-R)/(NIR
+ 6⁎R + 7.5⁎B + 1)

R[670], NIR[800] & B[490]; R[670], NIR[800] & B
[450]

Yield estimation; Biotic stress detection (Gong et al., 2018); (Zhao et al., 2020a)

RDVI = (NIR-R)/(NIR
+ R)0.5

R[670] & NIR[800]; R[670] & NIR[800] Yield estimation; Nitrogen & water stress
detection

(Gong et al., 2018); (Rubo and
Zinkernagel, 2022)

TVI = 0.5⁎[120(NIR-G)-200
(R-G)]

R[670], NIR[800] & G[550]; R[650–680], NIR
[780–890] & G[560–600]

Yield estimation; Biotic stress and yield
estimation

(Gong et al., 2018); (Cao et al., 2015)

SAVI = (NIR-R)/(NIR + R
+ 0.5)⁎(1 + 0.5)

R[670] & NIR[800]; R[575–675] & NIR[810–890]; R
[660] & NIR[790]; R[630–690] & NIR[760–900]

Yield estimation; Vegetation density
estimation; Nitrogen & water stress detection;
Biotic stress detection

(Gong et al., 2018); (Sabah et al., 2022);
(Mwinuka et al., 2022);(Théau et al.,
2020)

OSAVI = (NIR-R)/(NIR + R
+ 0.16)

R[575–675] & NIR[810–890]; R[660] & NIR[790]; R
[717] & NIR[840]; R[640–680] & NIR[770–810]

Vegetation density estimation; Nitrogen &
water stress detection; Yield estimation; Biotic
stress detection

(Sabah et al., 2022); (Mwinuka et al.,
2022); (Danilevicz et al., 2021); (Marin
et al., 2021)

WDRVI =
(0.1⁎NIR-R)/(0.1⁎NIR + R)

R[615–685] & NIR[755–805] Nitrogen & water stress detection and yield
estimation

(Maresma et al., 2016)

GNDVI = (NIR-G)/(NIR
+ G)

G[550] & NIR[790]; G[560] & NIR[840]; G[520–600]
& NIR[760–900]

Nitrogen & water stress detection; Yield
estimation; Biotic stress detection

(Mwinuka et al., 2022); (Danilevicz
et al., 2021); (Théau et al., 2020)

NDRE = (NIR-RE)/(NIR
+ RE)

RE[735] & NIR[790];RE[712–722] & NIR[820–860] Nitrogen & water stress detection; Biotic stress
detection

(Mwinuka et al., 2022); (Shahi, 2023)

CWSI = (Tc-Tw)/(Td-Tw) – Water stress detection (Gonzalez-dugo et al., 2013; Espinoza
et al., 2017)

LAI = AL/AG – Yield estimation; Biotic stress detection (Bascon et al., 2022); (Shahi, 2023)
NDWI = (NIR-SWIR)/(NIR
+ SWIR)

NIR[750–1300] & SWIR[1300–2500] Biotic stress detection (Yu et al., 2018)

PSRI = (R-G)/RE R[630–690], G[545-575 nm] & RE[712–722] Biotic stress detection (Shahi, 2023)
DSI ∑ CF∗S TP∗Imax ∗100 – Disease severity detection (Zhao et al., 2020a); (Fenu and Malloci,

2021)

Tc - average crown temperature of a plant, Tw - temperature of a non-stressed leaf, Td - temperature of a stressed leaf; AL - Leaf area of a plant and AG - Ground area occupied by
plant; CF - class frequency, S - score of rating class, TP - total number of observations, Imax - maximal disease index the rating scale.
⁎ This column gives the wavelengths of the spectral bands chosen by various researchers (as cited in corresponding reference column) for a given vegetation index.
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2.5. Enhanced vegetation index (EVI)

It is an optimized vegetation index that takes into account atmo-
spheric background, soil conditions and canopy structure and is de-
veloped for correction of NDVI values specifically for dense
vegetation. The EVI is useful in measuring drought related stress
(Integrated Drought Management Programme, 2024). Its range
varies between −1.0 to 1.0 where higher values are associated with
healthy vegetation. The formula (IDB, 2023) for calculating EVI is
given in Eq. (5).

EVI 2 5 NIR − R NIR 6 R 7 5 B 1 5

where B = (420 nm to 480 nm), R = (640 nm to 760 nm) and
NIR = (780 nm to 1400 nm) (IDB, 2023).

2.6. Leaf area index (LAI)

It is used to measure crop growth and canopy structure. It is calcu-
lated as half the area (one-sided area) of green leaves per unit ground
surface area. LAI has a highly variable range with LAI of less than 1 for
some desert ecosystems and LAI around 9 for dense tropical rainforests
(Campbell, n.d).

LAI AL AG 6

where AL denotes the leaf area of a plant andAG denotes the ground area
occupied by the plant.

2.7. Normalized difference red edge index (NDRE)

NDRE is used to measure the plant chlorophyll content. It is used to
differentiate between healthy and stressed vegetation. The formula
(Barnes et al., 2000) is given in Eq. (7).
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NDRE NIR − RE NIR RE 7

where NIR = 790 nm and RE = 720 nm. NDRE values range between
−1.0 to 1.0. Highest values of NDRE correspond to healthy and middle
range values correspond to unhealthy vegetation. Bare soil has the low-
est values.

2.8. Soil adjusted vegetation index (SAVI)

It corrects the NDVI value by using a soil brightness correction factor
for low vegetation areas. The formula (Huete, 1988) is given in Eq. (8).

SAVI NIR − R NIR R L 1 L 8

where NIR=800 nm, R=670 nm and L=0.5 formost land covers. For
L = 0, SAVI = NDVI. SAVI values lie between range− 1.0 to 1.0. Higher
SAVI values correspond to denser vegetation while lower values corre-
spond to little or no vegetation similar to NDVI.

2.9. Optimized soil adjusted vegetation index (OSAVI)

It refers to an optimized version of SAVI (Rondeaux, 1996). The for-
mula is given in Eq. (9).

OSAVI NIR − R NIR R 0 16 9

where NIR = 800 nm and R = 670 nm. OSAVI values lie between
range −1.0 to 1.0. Higher OSAVI values correspond to denser while
lower values correspond to little vegetation.

2.10. Plant senescence reflectance index (PSRI)

It is used for plant stress detection and yield estimation. The formula
is givenby Eq. (10) in terms of reflectance values (Merzlyak et al., 1999).
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PSRI R − G RE 10

where R = 678 nm, G = 500 nm and RE (Red Edge) = 750 nm. The
range of values for PSRI lies between −1.0 to 1.0. Higher values of
PSRI indicate the ripening of fruit and increased canopy senescence
and stress.

2.11. Wide dynamic range vegetation index (WDRVI)

It is similar to NDVI but more accurate for measuring canopy differ-
ences in high density vegetation. The formula is given in Eq. (11).

WDRVI a NIR − R a NIR R 11

where R= (580 nm to 680 nm), NIR= (725 nm to 1000 nm) and a is a
weighting coefficient that lies in range 0.1 to 0.2 (Gitelson, 2004). The
range of values lies between −1.0 to 1.0. If weighting coefficient a =
1 then WDRVI = NDVI.

2.12. Renormalized difference vegetation index (RDVI)

It is used for detection of healthy vegetation. It is an improvement in
NDVI in order to linearize the relationship with LAI. The formula
(Roujean and Breon, 1995) is given in Eq. (12).

RDVI NIR − R NIR R 0 5 12

where NIR=850 nmand R=650 nm. The range of values lies between
−1.0 to 1.0.

2.13. Triangular vegetation index (TVI)

It measures the area of hypothetical triangle made by green peak,
red minimum reflectance and near infrared shoulder (Haboudane
et al., 2004). It is sensitive to leaf chlorophyll content and can be used
for nitrogen stress detection in plants. The formula is given in the
Eq. (13).

TVI 0 5 120 NIR − G − 200 R − G 13

whereNIR=750nm, G=550 nmand R=670nm. The range of values
for TVI lies between −1 and 1. Higher TVI values indicate healthy and
dense vegetation while lower values may indicate stressed or sparse
vegetation, or surfaces other than vegetation.

2.14. Disease severity index (DSI)

It is a percentage that is used to determine the severity level of dis-
ease in plants and is used with the data represented on a special ordinal
scale. The classes are comprised of consecutive ranges of defined inter-
vals that are based on the area percentage of disease symptoms. The for-
mula (Chiang et al., 2017) is given in Eq. (14).

DSI ∑ CF S TP Imax 100 14

where CF is class frequency corresponding to the number of observa-
tions occurring in a class interval, S is the score of rating class on the or-
dinal scale, TP is the total number of observations, and Imax is the
maximal disease index that is the highest numerical point on the
rating scale. DSI values range from 0% (no disease) to 100% (maximal
disease).

3. Image acquisition

Imaging technology in agriculture includes the use of ground sens-
ing robots, aerial drone imaging and remote sensing using satellite im-
agery. With these image acquisition technologies, it is possible to
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examine and monitor the crops in real time for better health assess-
ment, yield estimation and determining the soil conditions leading to
better quality produce and advanced planning. Core imaging technolo-
gies used in agricultural imaging include red, green and blue (RGB),
multispectral hyperspectral, and thermal imaging as depicted in Fig. 3.

3.1. RGB imaging

A widely used imaging method is RGB imaging that uses the digital
camera to capture visible light reflected from the objects to produce a
digital image. Visible light falls in the 400-700 nm range of electromag-
netic spectrum and includes red, blue and green bands of the electro-
magnetic spectrum. RGB imaging technique has been widely
employed by the researchers for various precision agriculture applica-
tions. Liu (2022) used a high resolution CMOS sensor based RGB camera
to capture soil sample images for soil water content detection. Azimi
et al. (2021b) used CMOS digital single-lens reflex (SLR) camera for
chickpea plant shoot imaging for water stress detection. Zhang et al.
(2022) also used a digital SLR camera for disease detection in grapevine.
Khan et al. (2021) attached an RGB camera to unmanned air vehicle
(UAV) to get images of coriander field for spraying area recognition
for weed control. Tagarakis et al. (2022) used an RGB depth camera
mounted on an unmanned ground vehicle (UGV) for 3D reconstruction
of a commercial walnut orchard. Lee et al. (2023) detected defected ap-
ples using a multi-camera system employing RGB imaging. Maheswari
et al. (2022) performed tomato yield estimation using RGB imaging
technology. The images were taken at night time to avoid illumination
effects due to sunlight.

3.2. Multispectral imaging

Multispectral imaging collects a few discrete spectral bands, typi-
cally less than 10, including RGB channels from visible spectrum, near
and far infrared, and near ultraviolet bands of the electromagnetic spec-
trum. Multispectral imagery can be used for early identification of
stresses in crops, enabling timely decisions to increase crop yield
while minimizing the use of pesticides and fertilizers. Multispectral
data can also be used for crop yield estimation by plant counting. Vege-
tation indices such as NDVI can be calculated to measure water content
in plants. An example of multispectral imaging is the work of Adhikari
et al. (2020), who developed a smartphone based imaging module for
measuring plant nitrogen content using multispectral imaging tech-
nique. Another example that utilizes a UAV for obtaining the images of
rice crop, is thework of Colorado et al. (2020). They used Parrot Sequoia
multispectral sensor for leaf nitrogen content estimation. Singh and
Gaurav (2023) used multispectral satellite imagery for soil surface
moisture content estimation. Fraccaro et al. (2022) used a combination
of RGB andmultispectral imaging devicesmounted on a UAV to identify
weed infestation in winter wheat. Bascon et al. (2022) used UAV based
multispectral imagery for rice yield prediction. Campos et al. (2020)
used multispectral camera mounted on a UAV for variable rate applica-
tion of pesticides in vineyards.

3.3. Hyperspectral imaging

Hyperspectral Imaging consists of continuous narrow bands with
spectral resolution of 10-20 nm. Hyperspectral image can contain hun-
dreds of bands of electromagnetic spectrumandhasmore informational
content as compared to multispectral imaging but complexity is esca-
lated due to the presence of redundant information. Hyperspectral im-
aging has high spatial and temporal resolution which makes it
possible to distinguish smaller features and changes in plant health as
well as soil degradation and changes in other environmental factors.
While multispectral imaging can provide information about plant
health in general with the help of vegetation reflectance in visible,
near infrared and red edge region, hyperspectral information can be



Fig. 3. Image acquisition techniques.
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used to identify specific diseases, weeds or pests based on the unique
spectral signature of each crop and vegetation including weeds.
Hyperspectral imaging is mostly used for crop classification and weed
identification. Photochemical reflectance index can also be used tomea-
sure water stresses. Datta et al. (2023) used hyperspectral imagery for
soil properties characterization. Data obtained through the imaging de-
vice included 125 spectral channels of 4 nm spectral resolution in range
450-950 nm. Moghadam et al. (2017) used two different hyperspectral
cameras for disease detection in capsicum plants. Short wavelength in-
frared (SWIR) hyperspectral camera with the spectral range of 900-
2500 nm providing 168 spectral bands. Visible and near infrared
(VNIR) camera with a spectral range of 400-1000 nm providing 324
spectral bands. Elvanidi et al. (2018) used a spectroradiometer with
the spectral range of 350-2500 nm and a VNIR camera with the range
400-1000 nm to measure water and nitrogen stress in tomato crop.

3.4. Thermal imaging

Thermal imaging senses infrared radiation emitted by an object to
produce a thermal image of the corresponding object. It can be used to
detect water stresses in crops considering that the temperature for the
plants under water stress is higher as compared to unstressed plants.
Espinoza et al. (2017) used a combination of a multispectral camera
and a thermal infrared camera for water stress identification in grape-
vine. They used a UAV to collect the images from both the sensors.
Quebrajo et al. (2018) also used a thermal infrared camera mounted
on a UAV for sugarbeet irrigation management. Thermal imaging can
also be useful in the defect detection and identification of diseases and
pests in crops. Batchuluun et al. (2022) collected a thermal plant dataset
for disease detection in rice crop using deep learning approach. Kuzy
et al. (2018) developed a pulsed thermographic imaging system utiliz-
ing a thermal infrared camera for blueberry bruise detection. Melesse
et al. (2022) used a thermal camera for quality assessment of banana
fruit during storage time.

Farmers are increasingly turning to latest imaging technologies, es-
pecially drones, for more precise monitoring solutions as compared to
satellite images, resulting in better agricultural throughput, reduced
risk and improved precision agriculture practices. Drones have revolu-
tionized the industry by providing farmers with multi-spectral imaging
information, allowing them to better assess crop health, which was not
possible with traditional satellite imagery. By combining Global
69
Positioning System (GPS) technology with field maps, farmers can
now make informed decisions regarding precision agriculture applica-
tions.

4. Image stitching and photogrammetry

Image stitching is used for the generation of a panoramic picture
from two or more overlapping images. Main tasks in image stitching
are image alignment and blending. During the image alignment process,
correspondence among overlapping images is established. The two
main approaches for alignment are direct and feature based techniques
(Adel et al., 2014).

Direct techniques use a pixel-wise comparison to establish the over-
lap between various images of the same scene. Feature based tech-
niques use key point matching to find the alignment between images.
After identifying the overlap, appropriate transformations are applied
to align the images for the registration process. Finally, blending is
done to ensure seamless transition between images by removing
harsh lines and ghosting artefacts caused during to image registration
process. Image stitching workflow is given in Fig. 4.

Researchers have explored various methods for implementing
image stitching. Abbadi et al. (2021); Mehrish et al. (2014); Megha
and Rajkumar (2022) have provided detailed comparison of different
approaches used in image stitching.

Many researchers have worked on the improvement of the existing
image stitching techniques. Liu et al. (2022) proposed a fast scale-
invariant feature transform (SIFT) algorithm for image stitching for
the detection of straw return rate in the Blackland areas of China. They
performedhistogramequalization andnoise removal as a preprocessing
step on drone images before applying an optimized SIFT algorithm.
Their algorithm performed down-sampling to reduce the number of
key-points to be matched in images and then used MN SIFT descriptor
that is based on normalized gradients to improve speed. To improve
the accuracy of matched key-points, they used the progressive sample
consistency (PROSAC) algorithm. For image fusion, they performed op-
timal stitching line detection along with fading in and fading out
method. The sutures in the overlapping region were detected based
on texture, color and gradient difference. For multiple image stitching,
a layered approach was used in which images acquired from the same
aerial route were stitched first to get layers containing multiple images
stitched together. Then the panoramic result of each image layer was



Fig. 4. Image stitching workflow.
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stitched to get the final full panoramic image. Their algorithm has been
reported to be more optimized and fast as compared to traditional SIFT
and speeded up robust features (SURF) basedmethods. Lee et al. (2020)
presented an improved stitching method based on optical flow algo-
rithm. They claimed that a better 360 panorama can be generated
using optical flow algorithm as compared to traditional featured-
based techniques which lacked accuracy because of variation in the
depth of projected area. After identifying the overlapping region
through feature matching, correction in the seam of overlapping area
was performed using the motion fields based on the values of pixels in
the corresponding region. Their method worked best for the real-time
stitching of images. Gao et al. (2023) proposed an improved fusion algo-
rithm for removing the discontinuities in stitching process. They im-
proved the feature matching using the binary robust invariant scalable
keypoints (BRISK) and grid-based motion statistics (GMS) algorithm.
Seam line was found using optimal seam algorithm and fusion was
done using fade-in fade-out weighting algorithm. The research was
aimed at providing an improvement in image stitching based on fast
image algorithms. Tang et al. (2023) proposed an improvement of
image warping method using an adaptive triangular mesh-based opti-
mization technique. Their technique used feature points and uniform
points as grid vertices. The proportion of each image part was found
on the base of the distance between vertices and the nearest feature
points. Theirmethod successfully removed the ghosting effects and pro-
duced better looking panoramic images. Li et al. (2017) improved the
stitching process by implementing an enhanced weighted fusion algo-
rithm that eliminated the motion-based ghosting effect; however,
their video fusion technique was relatively slow and needed improve-
ment for real-time implementation. Yu et al. (2023) used SIFT for fea-
ture detection and Local Graph Structure Consensus (LGSC) for outlier
removal. Then they used a local mesh alignment method for pre-
warping images. Images were divided into grids and local homography
for each mesh was generated for better alignment. Image fusion was
done after energy function generation and linear blending where
line segment detector (LSD) algorithm (Gioi et al., 2010) was used for
line segment detection. Energy function was defined using point and
line correspondences, and structure preservation such that linear struc-
ture would not appear bent during warping and the boundary of the
resulting image remained rectangular. Their method provided better
alignment results with structure preservation but time complexity be-
came higher with increasing number of images and high resolution
thus preventing real-time performance. Yuan et al. (2021) proposed a
superpixel-based stitching technique. In thefirst step, theirmethod per-
formed adaptive as-natural-as-possible (AANAP) image registration
method. Then simple linear iterative clustering (SLIC) algorithm was
used to segment the overlapping region into super pixels. The energy
function was proposed based on texture complexity, color difference
and gradient difference information to find optimal seam line. At the
end superpixel-based color blending was performed to obtain final re-
sults. A comparison of various stitching approaches is presented in
Table 2.

Agricultural field mapping can be done using image stitching
techniques that can generate a connected and continuous
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panoramic image. Image stitching can work with fewer key points
and small overlap between the images (a 30% overlap is normally
sufficient for many applications). It works well with small datasets
in flat terrain applications. For non-flat terrains, image artefacts
are generated due tomisalignment of objects in various photos. Fur-
thermore, in non-flat terrains, the scale is not preserved and vary
based on the distance of each point from the camera (Pix4D,
2021). Generation of more accurate and precise orthomosaics
from aerial photos requires the use of photogrammetry. Photo-
grammetry is an image stitching technique that generates rectified
panoramas such that distances are preserved and geometric distor-
tion is removed. It provides better and precise results as compared
to simple image stitching, however the process is computationally
extensive and high overlapping between the images is needed. Nor-
mally an 80% overlap is required for generating an orthophoto from
photogrammetry process. Digital Surface Models (DSMs) are used
for removing perspective distortion and scale difference from con-
nected images to generate orthomaosaics that are orthorectified
and are called true orthophotos. True orthophoto generation is an
important step in agricultural drone mapping. Farmers can make
use of high-resolution drone maps with fields' boundary and vege-
tation information for monitoring and surveying the farmlands
and consequently making improved decisions for better crop pro-
duction. They can compare the growth of crops at various times of
year, identify diseases and pest infestations, make prescription
maps for application of fertilizer, herbicides and pesticides, analyze
the moisture content in plants and soil to modify irrigation system,
and plan the harvest.

The quality of orthomosaics depends mainly on the overlap per-
centage. Mesas-Carrascosa et al. (2017) compared the effect of vary-
ing flight parameters on the accuracy of orthomosaics using the
Agisoft Photoscan Software. Seven altitude/height values were cho-
sen including 30, 40, 50, 60, 70, 80, and 90 m above the ground.
Two overlap settings were selected including 60–30% and 70–40%
endlap – sidelap values. Best photo quality was found with 60-90 m
height of flight and 70–40% overlap. Ford et al. (2019) used Pix4D to
generated orthophotos of thermal and multispectral images obtained
of a corn andwinter wheat fields. Usually orthomosaics are generated
offline using various commercial tools or software. Zhao et al.
(2020b) present an online method for photo stitching in mobile de-
vices that works in low overlap cases. Table 3 shows a non-
exhaustive list of widely used photogrammetry tools commercially
available.

5. Image analysis

Image analysis is performed to extract useful information from the
images. Humans are subjective in visually evaluating data in fields.
Image analysis using computer vision and machine learning technolo-
gies offers several advantages over humans such as fast speed, reliability
and improved accuracy. The analysis techniques depend on the applica-
tion under consideration. Some common steps might include pre-
processing, orthomosaicing, feature extraction, plant segmentation,



Table 2
Comparison of stitching techniques.

Image alignment Image fusion Advantages Reference

Optimized SIFT and PROSAC Optimal stitch line with fade in fade out method Fast and robust stitching (Liu et al.,
2022)

Equirectangular plus optical
flow

Motion field maps plus padding and interpolation Interpolation time is long, good for real time stitching (Lee et al.,
2020)

BRISK detector, Brute force &
GMS for matching

Optimal seam plus optimized fade in fade out weighted
average fusion algorithm

Better stitch quality with reduced ghosting (Gao et al.,
2023)

SIFT and RANSAC Triangular mesh deformation & joint optimization using
energy function and APAP warp

Reduced ghosting effect (Tang et al.,
2023)

SIFT and RANSAC Improved weighted average fusion Improved speed and reduced ghosting (Li et al.,
2017)

SIFT and LGSC Local mesh alignment, total energy fuction minimization &
linear blending

Better alignment &structure preservation but high time
complexity for real time performance

(Yu et al.,
2023)

AANAP & SLIC for super pixel
segmentation

Super pixel based energy function & color blending Better stitching results with time efficiency (Yuan et al.,
2021)

SIFT - Scale invariant feature transform; PROSAC - Progressive sample consistency algorithm; SURF - Speeded up robust features; BRISK - Binary robust invariant scalable keypoints; GMS -
Grid-basedmotion statistics algorithm; RANSAC - Random sample consensus; APAP - As-projective-as-possible; LGSC - Local Graph Structure Consensus; AANAP - As-natural-as-possible;
SLIC - simple linear iterative clustering algorithm.
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object recognition, and classification. In precision agriculture, image
analysis is used for estimating crop metrics, devising treatment plans,
and decision-making. Some application areas utilizing image analysis
techniques are explored in this section.

5.1. Soil monitoring

Soil health and property characterization are sometimes necessary
for better agricultural productivity. One important property is soil tex-
ture that has an effect onmany other soil properties such as infiltration,
water holding, and potential of hydrogen (PH) buffering capacities. Soil
organic matter (SOM) is another property that affects the quality of soil
and influences other soil properties. Soil nitrogen defines the fertility of
soil while soil moisture characterization is done to predict water re-
quirements. Traditional laboratory testing methods for measuring soil
characteristics are costly and time consuming. Vision-guided systems
Table 3
A non-exhaustive list of commercially available photogrammetry tools.

Software Pros Cons

Pix4D Windows, macOS, Android, iOS support High Price
Different versions for different industries ($350/month

monthly
subscription)

Easy teamwork owing to rich collaboration
features available

Relatively slower

Drone
Deploy

Windows, macOS, Android, iOS support High Price

Real time orthomosaic generation ($499/month
monthly
subscription)

Multiple types of drones are supported
Efficient customer support services

Agisoft
Metashape

Windows, MacOS and Linux support High Price for
professional edition

Extensive menu ($3499 one time)
Fast performance for small datasets
Generated models can be uploaded to web
based platform support

Correlator
3D

Fastest Only supports
Windows

Good for agriculture applications High Price
($295/month)

Easy templates
WebODM Supports Windows and macOS Difficult installation

Free/opensource Slow for large
datasets

Easy templates
MicMac Windows and macOS support More adapted to

professional users
Free/opensource
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can be used for soil data collection and analysis for measuring various
important properties of soil that can be then utilized by farmers to
make informed decisions on the amount of fertilizer needed and to
plan irrigation schedules accordingly. Fig. 5 presents the workflow of a
vision-guided soil monitoring system. Images of soil samples are
obtained and analyzed using various image processing and computer
vision techniques for the extraction of useful information. This informa-
tion is then used by machine learning algorithms to make predictions
about the soil properties. At the end, decision about the farming require-
ments are made with the help of estimated quantities.

In literature, various computer vision and machine learning tech-
niques have been utilized for analyzing different soil properties.
Sudarsan et al. (2016) presented a microscope-based imaging system
for soil texture and organic matter characterization. They applied me-
dianfilter during preprocessing to remove the noise caused bymicro vi-
brations during soil sample handling. Image segmentation was done
using adaptive Otsu thresholding. Number of objects was found using
connected component labeling technique. Small holes were identified
using blob analysis and filled using flood fill method. Watershed algo-
rithm was applied for image segmentation. The features computed in-
cluded the values of hue, saturation, and value parameters, porosity
and local variance matrices with three window sizes on the masked as
well as the original images. They used linear regression to define a pre-
dictive relationship between the calculated parameters through image
analysis and laboratory-measured properties including sand, silt, clay
and SOM composition. The R2 values for the testing dataset for SOM
and sand content was 0.83 and 0.63, respectively. Yang et al. (2021b)
used hyperspectral imaging to measure various soil characteristics in-
cluding SOM and soil total nitrogen (STN). Competitive adaptive
reweighted sampling (CARS) and successive projections algorithm
(SPA) were used for selection of hyperspectral bands containing
necessary information about the desired characteristics. For prediction,
particle swarmoptimization (PSO)wasusedwith extreme learningma-
chines (ELM) algorithm. Hyperspectral vegetation indices are numbers
obtained from the reflectance bands to study the stress and biochemical
properties of plants. Yang et al. (2021a) studied relationship between
the carbon content of soil and hyperspectral indices. They constructed
their model using partial least squares regression. They reported that
the relationship between spectral characteristics and soil organic carbon
(SOC) content could be improved using differential transformations.
Another important application is the development of smart irrigation
systems which supply exactly the right amount of water depending
on the requirements of the land estimated using soil analysis. Al-Naji
et al. (2021) used RGB camera and AI to perform color analysis of soil
for predicting the water requirement. Soil images were taken under
varying illumination and water conditions of soil (dry or wet). Change
in color values of the soil could be because of the water content or



Fig. 5. Vision-guided soil monitoring and analysis.
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varying illumination conditions due to sunny or cloudy weather. Feed
forward backpropagation neural network was trained on the color
channels for categorizing the soil condition. They reported MSE of
1.004 10−5 for test data. Liu (2022) proposed an imaging system for
soil water content detection using color feature information. They
performed a comparison of five different color spaces. Gaussian curve
fitting on each channel was done to estimate the statistical parameters
for the images. Least squares regression (LSR), Stepwise regression
(STR), and partial least squares regression (PLSR) was performed at
the end to predict the soil water content. Singh and Gaurav (2023)
usedMultispectral imagery from satellites to estimate surface soilmois-
ture. For ground truth, universal random grid sampling method was
used on field to measure soil moisture. Various preprocessing tech-
niques were used for denoising and feature extraction. Various features
from satellite data were extracted for final estimation including Lati-
tude, Longitude, backscatter values, incidence angles, NDVI, digital
elevation model (DEM) and two synthetic features from VV (vertical-
vertical) and VH (vertical-horizontal) polarization data. Classification
was performed using a feed forward neural network. Datta et al.
(2023) estimated SOC, soil nitrogen and soil moisture based on
hyperspectral data. Data cleaning was done to reduce inhomogenety
of the data, then standardization of data was done using data scaling.
Empirical mode decomposition was performed to obtain intrinsic
mode functions (IMFs) from the input data. PCA was used for dimen-
sionality reduction. Performance of different predictive models includ-
ing random forest, decision tree, gradient boosting, self organizing
map, k nearest neighbors, artificial neural network, support vector re-
gression and 1D convolution neural network (CNN) was compared.
Table 4
Comparison of soil monitoring techniques.

Imaging
Technique

Image Analysis Methods Decision-Makin

Digital
microscope-based
imaging

Thresholding; Connected component analysis;
Watershed segmentation; Feature Extraction

Multivariate st

Hyperspectral
imaging

Multiplicative scattering correction for Denoising;
Competitive adaptive reweighted sampling &
successive projections algorithms for band selection

PSO & extreme

Hyperspectral
imaging

Simple, first order and second order differential
transforms

Partial least squ

RGB Imaging Manual selection of ROI; Averaging of brightness
values for ROI

Feed forward b

RGB Imaging ROI based on Thresholding; RGB to CIE & HLS color
space transformations; Feature extraction

Least squares r
squares regress

Multispectral
satellite imagery

Radiometric calibration; Multi-look correction;
Speckle noise removal; terrain correction; Feature
extraction

Feed forward a

Hyperspectral
data

Data cleaning and scaling; Visual band selection;
Empirical mode decomposition; PCA

Random forest
organizing map
network; Supp
network

RGB - Red-green-blue; PSO - Particle swarm optimization; ROI - Region of interest; PCA - Prin
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They compared the results obtained using all hyperspectral bands, full
range of visual bands andRGB values selected such that themean reflec-
tance of the blue band was in range 400–500 nm, green band in
500–600 nm, and red band in 600–700 nm. Best prediction results
were obtained when a full range of visible spectrum was considered.
Table 4 gives a comparison of various soil monitoring techniques.

5.2. Stress detection and targeted spraying

Plant stress indicates a condition that affects the normal growth of a
plant. Crop yield and productivity are highly affected by stresses that
can be caused by various environmental factors. Based on the causes,
stresses can be divided into two categories: abiotic stresses and biotic
stresses. Abiotic stresses are caused by the non-living components of
an ecosystem. Thesemay include very high or low temperature, insuffi-
cient or excessive water, salinity, radiations, or presence of heavy metal
in the soil. Biotic stresses refer to the stresses caused by pests, fungi and
other microorganisms that are a cause of various diseases in plants.
Fig. 6 describes the workflow of an automated vision-guided system
for detection of biotic and abiotic stresses in plants. The analysis block
utilizes vision-based techniques to extract necessary information ac-
cording to the application. This information is then forwarded to the
learning block that classifies and predicts plant stresses. Decision
block thenmakes necessary decisions about the irrigation requirements
and targeted spraying of pesticides and fertilizers.

Water and nitrogen stresses are the abiotic stresses caused by excess
or deficiency ofwater and nitrogen in plants. Nitrogen levels directly in-
fluence the final crop production. The estimation of nitrogen levels and
g / Prediction Techniques Application Reference

epwise linear regression Soil Texture & soil
organic matter
characterization

(Sudarsan
et al.,
2016)

learning machine algorithm Soil organic matter &
soil total nitrogen
characterization

(Yang
et al.,
2021a)

are regression Soil organic carbon
content prediction

(Yang
et al.,
2021b)

ack propagation neural network Soil irrigation
requirement
prediction

(Al-Naji
et al.,
2021)

egression; Stepwise regression & partial least
ion

Soil water content
detection

(Liu,
2022)

rtificial neural network Surface soil moisture
estimation

(Singh
and
Gaurav,
2023)

; Decision tree; Gradient boosting; Self
; k-nearest neighbors; Artificial neural
ort vector regression & 1D Convolution neural

Soil Organic Carbon,
Soil Nitrogen & Soil
moisture
characterization

(Datta
et al.,
2023)

ciple component analysis.



Fig. 6. Vision guided stress detection in crops.
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the generation of prescription maps for precise fertilizer application at
targeted locations are important applications of computer vision in
agriculture. The necessary nitrogen level required for each crop varies
depending upon the crop under consideration. Similarly, water stress
in plants can be measured using automated techniques that enable
the implementation of smart irrigation systems that usewater as per re-
quirement, thus optimizing thewater consumption.Nitrogendeficiency
is directly linked with the color and texture of leaves. Hence imaging
techniques can be used for nitrogen level prediction. Various methods
of nitrogen level detection have been implemented in literature.
Haider et al. (2021) estimated nitrogen content in plant leaves based
on color features extracted fromRGB images of leaves andby comparing
them with the reference color values. Zhao et al. (2021) have studied
the relationship between plant growth indices and nitrogen content
for winter wheat images by extracting the canopy cover. Adhikari
Table 5
Comparison of abiotic stress detection techniques.

Imaging
Technique

Image Analysis Methods Decision-Making/ Pred

RGB imaging Thresholding; ROI detection using bounding
box; ROI color detection

ROI color comparison
values

RGB imaging Canopy cover segmentation using
thresholding on G-R channel values

Regression analysis us

Multispectral
imaging

Background segmentation using thresholding;
Reflectance ratio from R & NIR mean values

Statistical analysis of R
nitrogen content

Multispectral
Imaging

GrabCut & guided filter segmentation, Multi-variable linear r
vector machines; Artifi

Multispectral
Imaging

Image orthomosaicing; Vegetation indices
calculation; Crop height estimation

Statistical analysis of v
crop height and nitrog

Hyperspectral
imaging

Multiple reflectance indices calculation Classification Regressio

Multispectral
imaging

Image orthomosaicing; Multiple Vegetation
indices calculation

Statistical analysis of v

Hyperspectral
imaging

Denoising and normalization; Multiple
vegetation indices calculation

Statistical analysis of v
CARS-PLSR and inflect

Thermal
imaging

CWSI calculation based on canopy
temperature values

Histogram analysis of
index & crown temper

Thermal &
multispectral
imaging

Normalized relative canopy temperature &
spectral indices calculation

Statistical analysis

Thermal &
multispectral
imaging

Average temperature, NDVI and GNDVI
calculation

Statistical analysis

Thermal
imaging

Tree crown temperature & CWSI calculation Statistical analysis

Thermal
imaging

Mean temperature of vegetation cover & CWSI
calculation

Statistical analysis

RGB imaging Background segmentation; Binarization; Color
segmentation; Feature extraction

SVM, KNN, Decision tr
classification

RGB imaging CNN based feature extraction CNN-LSTM for classific

RGB imaging Image cropping MobileNet, Mnasnet an
classification

ROI - Region of interest; RGB - Red-green-blue; G-R - Green-Red; R - Red; NIR - Near infrared;
CWSI - Crop water stress index; NDVI - Normalized difference vegetation index; GNDVI - Green
neighbor classifier; CNN - Convolutional neural network; LSTM - Long short term memory net
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et al. (2020) estimated the nitrogen content using the reflectance ratio
calculated from red and near infrared image channels. Colorado et al.
(2020) (Colorado et al., 2020) usemultispectral imagery and vegetation
indices to measure nitrogen content in rice crop. Fu et al. (2021) give a
detailed overview of the use of various hyperspectral techniques for ni-
trogen content estimation. Maresma et al. (2016) perform statistical
analysis to define relationship between the amount of nitrogen applied
and various vegetation indices and crop height. The vegetation indices
were calculated from multispectral images. Elvanidi et al. (2018)
foundwater and nitrogen deficit in tomato using hyperspectral imaging
data. Classification treewas used to predictwater and nitrogen contents
using various reflectance indices. Mwinuka et al. (2022); Rubo and
Zinkernagel (2022) focused on finding the relationship of nitrogen
and water stress with different vegetation indices extracted using mul-
tispectral and hyperspectral imagery.
iction Techniques Application Reference

with reference Nitrogen stress detection (Haider et al.,
2021)

ing allometric curve Relationship between plant growth indices
& nitrogen status with plant canopy cover

(Zhao et al.,
2021)

eflectance ratio & Nitrogen content estimation (Adhikari et al.,
2020)

egression; support
cial neural networks

Nitrogen content estimation (Colorado et al.,
2020)

egetation indices,
en

Nitrogen fertilizer requirement & crop yield
prediction

(Maresma et al.,
2016)

n tree for prediction Water & nitrogen deficit stress detection (Elvanidi et al.,
2018)

egetation indices Water & nitrogen level management (Mwinuka et al.,
2022)

egetation indices,
ion points

Water, chlorophyll & nitrogen content
estimation

(Rubo and
Zinkernagel,
2022)

crop water stress
ature

Water stress detection (Agam et al.,
2013)

Water stress detection (Elsayed et al.,
2017)

Water stress detection (Espinoza et al.,
2017)

Water stress detection (Gonzalez-dugo
et al., 2013)

Water stress detection (Quebrajo et al.,
2018)

ee and CNN based Nitrogen stress detection (Azimi et al.,
2021a)

ation Water stress detection (Azimi et al.,
2021b)

d EfficientNet for Water stress detection (Kamarudin and
Ismail, 2022)

CARS - Competitive adaptive reweighted sampling; PLSR - Partial least square regression;
normalized difference vegetation index; SVM - Support vector machine; KNN - K nearest

work.
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Thermal imaging of plants is another way of measuring water stress
since there is a direct relationship between water stress and tempera-
ture of leaves. Researchers including (Agam et al., 2013; Elsayed et al.,
2017; Espinoza et al., 2017; Gonzalez-dugo et al., 2013; Quebrajo
et al., 2018) have focused on the use of thermal imaging techniques to
precisely map the water content of a land for enhancing water usage
efficiency.

Apart from traditional spectral indices-based stress detection, some
researches focus on using the deep learning techniques for nitrogen
and water level detection in plants. Azimi et al. (2021a) proposed a 23
layered CNN architecture for nitrogen stress indication using RGB imag-
ing. Their proposed network outperformed the traditional machine
learning methods by attaining 8.25% better accuracy. Considering the
shortcoming of traditional methods of stress detection, which normally
require severe stress signs to be visible for reliable detection, Azimi et al.
(2021b) applied temporal analysis on visual stress symptoms in chick-
pea plants using long short-term memory (LSTM) network. Their net-
work achieved an accuracy of 98.5% on publicly available datasets of
chickpea shoot images. Chandel et al. (2021) compare the performance
of three neural network architectures including AlexNet, GoogleNet and
InceptionV3 for water stress detection in maize, okra, and soybean
crops. Their results showed that GoogleNet performed best by achieving
an accuracy of 98.3%. Kamarudin and Ismail (2022) used visible and
near infrared imagery and light weight CNN model for detecting water
stressed plants. Their EfficientNet model was able to get an accuracy
of more than 88%. A comparison of abiotic stress detection techniques
is given in Table 5.

Biotic stress includes harm caused to crops by the biological compo-
nents of the ecosystem. Early stress identification is crucial to prevent
crop losses in later stages. An estimated 30–40% crop loss is suffered
globally due to plant diseases caused solely by insects (García-Lara
and Saldivar, 2016). Researchers have tried various visual analysis and
classification techniques for biotic stress detection in plants. Qin et al.
(2016) compare three traditional machine learning techniques includ-
ing support vector machine (SVM), random forest classifier and k
nearest neighbor classifier for classifying four alfalfa leaf diseases.
Islam et al. (2017) implemented potato disease classification using an
SVM classifier. Saleem et al. (2022) proposed a region-based fully
convolutional network (RFCN) for disease detection in multiple crops
including pear, apple, avocado, kiwifruit and grapevine. A 93.8% mean
precision was reported for this model. Zhang et al. (2022) detected
grape downy mildew disease using YOLOv5-CA technique by integrat-
ing a coordinate attention technique with YOLOv5 architecture. Mean
accuracy of their system was reported as 89.55%. Esgario et al. (2020)
used ResNet50 architecture for biotic stress detection in coffee leaves.
They reported an accuracy of 95.24%. Fraccaro et al. (2022) used
UNET-ResNet34 encoder-decoder configuration for classification of
weed in winter wheat crop. A pixel-wise segmentation approach was
used to classify each pixel of an image to weed or background. They re-
ported an accuracy of 90%. Hu et al. (2021) present a semi-supervised
deep learning approach for weed classification in images without the
need for labeling the data. They trained the teacher model on synthetic
images, and then Faster RCNN (Region-based convolutional neural net-
works) was used to generated pseudo labels for the unlabeled data. Af-
terwards, the student model was finetuned on the weights obtained
through the teachermodel on synthetic and pseudo-labeled data collec-
tively. Their weed detection model had the performance comparable
with supervised methods. Chang and Lin (2018) proposed a machine
that could perform weeding and variable rate irrigation using image
processing and segmentation techniques. They used color information
to extract soil moisture content.

Overexposure to pesticides, herbicides and other chemicals causes
significant crop losses worldwide. Site-specific spraying allows less
use of chemicals hence increasing the environment sustainability. Fur-
thermore, with the help of latest drone technology, it is possible to au-
tomate the spraying process. Computer vision techniques combined
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with traditional or more recent deep learningmodels have been widely
explored in literature for generating prescription maps for targeted
spraying using unmanned air vehicle (UAV). Huang et al. (2018) per-
formed pixel-level classification using fully convolutional networks
(FCNs) on drone images of a ricefield forweed detection. They first gen-
erated an orthomosaic image of the field from UAV imagery. Then clas-
sification was performed to find the weed cover map. This cover map
was then segmented based on chessboard segmentation process to
find the targeted spraying area based on percentage of weed cover in
the grid. Khan et al. (2021) proposed a two-step process for real-time
spraying area recognition for UAV-based spraying. They first extract
color and shape information from UAV images and forward this infor-
mation to a target recognitionmodulewhich then performed classifica-
tion in twophases. Training and testingwere done in offline phase using
CNN. In online step, the real time input was classified using the data
from first step and trained classifier. They were able to get an F1 score
of 0.965. Authors in (Li et al., 2022) designed a real-timeweed spraying
system using an RGB camera-based imaging system and deep learning
classifiers. They designed a spraying system using microcontroller and
solenoid valve. Their camera module captured the images and sent it
to the onboard computing device that identified the target area to be
sprayed based on a trained neural network in real-time. They used
YOLOv5s architecture after replacing the backbone with MobileNetv3
to obtain a lightweight version of the classifier. Acharya (2023) pro-
posed a method for spray area identification along with the necessary
spray cone angle determination using CNN. Thorat et al. (2023) pro-
posed a system based on transition probability function (TPF), and
CNN to identify pests and recommend the insecticides needed for
targeted spraying. Their image-dataset consisted of the images of
pests. A 28-layered CNNwas used for classification offive types of insect
classes and based on the probability of each insect, corresponding insec-
ticide was recommended. Farooque et al. (2023) proposed a smart var-
iable rate multi purpose sprayer for agrochemical application in potato
field. They used three cameras to take the images simultaneously from
different rows in the farm for weed and disease detection. YOLOv3‑tiny
architecture was implemented for classification. Their system was able
to reduce the herbicide and pesticide application by 47% and 51%.
Campos et al. (2020) designed a variable rate sprayer. Multispectral im-
ages were used to obtain the vigor maps for grapevine. Pesticide appli-
cation rate was determined using a decision support system, Dosavina,
with the help of the canopy structural characteristics. Variable rate
sprayer was successfully able to adjust the working parameters accord-
ing to the prescriptionmaps. A comparison of biotic stress detection and
targeted spraying techniques is given in Table 6.

5.3. Crop yield estimation

Crop yield estimation is important for several reasons. National level
crop estimates determine themarket prices a consumer has to pay once
the commodity is available in the market. Personal level crop estimates
allow farmers to plan their budget accordingly. Crop yield is affected by
many factors including diseases, pests, deficiency of nutrients, water,
and soil characteristics. By having an accurate estimate of yield, farmers
can have a better idea about the cumulative effect of contributing factors
and thus can make informed decisions about the fertilization, agro-
chemical applications and harvest, etc. General workflow of crop yield
estimation using machine vision is given in Fig. 7. Crop images are ac-
quired using imaging techniques for data extraction in analysis step.
The predictions are done using learning techniques for crop yield
estimation using the analyzed data. Planning is done according to the
predictions obtained by the system.

Different methods for yield estimation using vision-based tech-
niques have been explored by the researchers in literature. Some of
the latest techniques are summarized in Table 7. Kestur et al. (2019)
presented an algorithm for countingmangoes focusing on yield estima-
tion problem. MangoNet, their deep learning architecture for mangoes



Table 6
Comparison of biotic stress detection and targeted spraying techniques.

Imaging
Technique

Image Analysis Methods Decision-Making/ Prediction Techniques Application Reference

RGB imaging Cropping; clustering & lesion segmentation; Color, shape
and texture feature extraction

Random forest, SVM and KNN classifiers Alfafa leaf disease
detection

(Qin et al.,
2016)

RGB imaging Leaf segmentation; Color and texture feature extraction SVM classifier Potato leaf disease
detection

(Islam
et al.,
2017)

RGB imaging Data augmentation & annotation Region-based fully convolutional network for
classification

Disease detection in five
horticulture crops

(Saleem
et al.,
2022)

RGB imaging Manual data annotation YOLOv5 with coordinate attention for classification Grape leaf disease
detection

(Zhang
et al.,
2022)

RGB imaging Image cropping, Data augmentation AlexNet; GoogLeNet; VGG16; MobileNetv2; ResNet50 Coffee leaf biotic stress
detection

(Esgario
et al.,
2020)

RGB &
multispectral
imaging

Image tiling & Downsampling of background class UNET-ResNet architecture Weed detection in winter
wheat crop

(Fraccaro
et al.,
2022)

RGB imaging Image synthesis Faster RCNN Weed detection in cotton
crop

(Hu et al.,
2021)

RGB imaging Adaptive thresholding; Morphological processing;
Foreground segmentation; Wet distribution area of surface
soil estimation using mean RGB values

Area based classification of plant & weed; Fuzzy logic
controller for variable rate irrigation

Weed detection &
Variable rate irrigation

(Chang
and Lin,
2018)

RGB imaging Orthomosaicing Fully convolutional neural network for weed detection;
Chessboard segmentation & Thresholding of weed cover
map for prescription map

Site-specific weed
management &
prescription map
generation

(Huang
et al.,
2018)

RGB imaging Video to image conversion; Color and shape information
extraction; Offline training and simulation

Convolutional Neural Network for classification Weed detection &
Targeted spraying

(Khan
et al.,
2021)

RGB imaging Image annotation; Single layer grid & target prediction box
generation for spraying module

Lightweight YOLOv5s for weed classification;
Thresholding on the intersection area for targeted
spraying

Weed detection &
Targeted pesticide
spraying

(Li et al.,
2022)

RGB imaging – Transition probability function-Convolutional neural
network

Targeted insecticide &
Fertilizer application

(Thorat
et al.,
2023)

RGB imaging Image annotation & labeling YOLOv3 tiny Targeted spraying of
agrochemicals

(Farooque
et al.,
2023)

Multispectral
imaging

Orthophoto maps; NDVI calculation; Vigor map generation
based on thresholding

Decision Support System Dosavina Variable rate application
of pesticides

(Campos
et al.,
2020)

RGB - Red-green-blue; SVM - Support vector machine; KNN - K nearest neighbors; RCNN - Region-based convolutional neural networks; NDVI - Normalized difference vegetation index.

S. Ghazal, A. Munir and W.S. Qureshi Artificial Intelligence in Agriculture 13 (2024) 64–83
detection and counting was designed based on semantic segmentation.
Images were taken from an RGB camera. They used more than 11,000
image patches with pixel-level class labeling, obtained from 40 images
for training while 1500 image patches obtained from 4 images were
used for testing purpose. Mangoes were detected from connected com-
ponent detection on the output of MangoNet. The training was per-
formed in two steps due to imbalanced classes. In the first step,
network was trained on a subset of images with at least one mango. In
second step, training was done on the entire dataset. Their F1 score
was reported as 63.2%. Danilevicz et al. (2021) proposed an early yield
prediction method based on multispectral imagery for maize crop.
They used a multimodal approach by combining the genotype
Fig. 7. Vision-based cro
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informationwithmultispectral data. The experimentalfield data includ-
ing parental lines, source of seed, fertilizer, date of plantation, and num-
ber of days after sowing of seeds was used for prediction using tabular
deep neural network. Another deep neural network was trained using
multispectral images and the vegetation indices. The output weights
of both themoduleswere then fed as input to the fusionmodule for pre-
diction. They compared the performance of the predictions obtained
through individual modules against the one obtained by the fusion
module. It was found that the performance greatly improved after fu-
sion with a root mean square error (RMSE) of 1.07 t ha. Zhang et al.
(2020) found the correlation between various spectral indices and the
estimated yield of the winter wheat crop. Yield model was generated
p yield prediction.



Table 7
Comparison of yield estimation techniques.

Imaging
Technique

Image Analysis Methods Decision-Making/ Prediction Techniques Application Reference

RGB imaging Data annotation; Semantic segmentation of images
using deep convolution network

Connected object detection Mango detection &
Counting

(Kestur et al.,
2019)

Multispectral
imaging

Orthomosaic generation; Vegetation indices
calculation

Random forest; XGBoost; Deep neural network Maize crop yield
estimation

(Danilevicz
et al., 2021)

Multispectral
Satellite imaging

Satellite image preprocessing; Vegetation indices
calculation

Partial Least Square Regression Winter wheat yield
estimation

(Zhang et al.,
2020)

RGB imaging Data Annotation & Augmentation SegNet Tomato yield estimation (Maheswari
et al., 2022)

Multispectral
Satellite imaging

Irregular data transformation based on thresholding;
Image resizing

Combined 3D convolutional and recurrent neural
networks

Crop yield estimation (Qiao et al.,
2021)

Multispectral
imaging

Orthomosaicing; Mean reflectance values &
vegetation indices calculation

XGboost algorithm Rice grain yield
prediction

(Bascon et al.,
2022)

RGB imaging Data augmentation; Spatial filtering & Contrast
enhancement; Ensembled classification

Random forest, gradient boosting, linear regression &
tree regression for yield prediction

Crop type classification &
yield estimation

(Ilyas et al.,
2023)

RGB - Red-green-blue; XGboost - Extreme gradient boosting algorithm.
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based on partial least square (PLS) algorithm using four vegetation in-
dices including GNDVI, optimized soil-adjusted vegetation index
(OSAVI), NDVI and PSRI. The RMSE for predicted and measured yield
were 693.9 kg ha and 786.5kg ha. Maheswari et al. (2022) proposed
a tomato yield estimation system using deep learning-based semantic
segmentation. RGB images of tomatoes were obtained from green-
house environment. The ground truth annotation was done for back-
ground, ripe, and unripe tomatoes. Data augmentation using
translation and rotation was performed. For classification they used
SegNet architecture with 16 layers of VGG19 for feature extraction.
They replaced the maxpooling layer by upsampling. They reported
an F1 score of 80.22%. Qiao et al. (2021) proposed a module for
extracting spatial and spectral features based on 3D CNN to capture
the correlation between bands along with the spatial and spectral in-
formation. They also proposed a bidirectional recurrent neural net-
work for capturing the temporal information from multi-spectral
and multi-temporal images. In order to cope with the challenge of ir-
regular shaped fields, they use data transformation based on
thresholding and image resizing as preprocessing steps before
inputing the data into deep network models. They reported an aver-
age RMSE of 0.84. Bascon et al. (2022) predicted rice yield using esti-
mated aboveground biomass (AGB) and leaf area index (LAI) from the
vegetation indices calculated from multispectral imagery. Ilyas et al.
(2023) proposed an ensembled classification method for crop type
classification and yield estimation. They used spatial filtering, scaling,
flipping, shearing, and zooming to enhance the images. Then they per-
formed ensembled classification using Adaboost, Decision Tree, Naive
Bayes, Random Forest and Logistic Regression for crop type classifica-
tion. For yield prediction they compared the performance of random
forest, gradient boosting, linear regression, and tree regressor out of
which the best prediction was resulted by gradient boosting algo-
rithm. van Klompenburg et al. (2020) have provided details of studies
implementing deep learning for crop yield estimation.
Fig. 8. Vision-guided
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5.4. Quality control

Automated quality inspection and grading of agricultural produce is
important for many aspects including food sustainability and reduction
in food loss. Early defect detection is crucial for better shelf life of the
produce. Considering that high quality products can generatemore rev-
enue, supply chain experts can use vision-based quality assessment to
assign the itemsbased on their predefined quality parameters to various
sale channels depending on customer preferences. Vision-guided intel-
ligent systems are more consistent and objective as compared to the
manual counterparts making quality assessment more reliable. As
shown in Fig. 8, produce images are analyzed using machine vision
and image processing, and the extracted data is used to predict the qual-
ity for grading and sorting accordingly.

Researchers throughout the years have explored various techniques
for defect detection and quality grading of fruits and vegetables. Sum-
mary of some latest techniques is given in Table 8. Santos Pereira et al.
(2018) predicted the ripeness of papaya fruit using random forest clas-
sifier and peel color factor. Classification was done for three maturity
stages. The ground truth was obtained using pulp firmness scores of
the fruit. Images of fruits were taken using an RGB camera. ROI was ex-
tracted using the saturation channel of hue-saturation-value (HSV)
color space with thresholding technique. They extracted twenty-one
color features based on RGB, HSV and Lab color spaces. Random forest
classifier was used to predict the ripeness based on extracted color fea-
tures. They reported an accuracy of 94.3%. Abbas et al. (2019) proposed
an apple grading and sorting system based on color, edge, and texture
features extracted from fruit images taken using RGB camera. Conver-
sion to HSV color space was done. Then binarization of V channel was
done such that the defected part appeared white and remaining ap-
peared black. Rotten parts were extracted using connected component
analysis. A logical ‘and’ operation was used to combine the three types
of feature images and depending on the area of white pixels in the
quality control.



Table 8
Comparison of quality control techniques.

Imaging
Technique

Image Analysis Methods Decision-Making/ Prediction Techniques Application Reference

RGB imaging ROI detection using thresholding; Color feature extraction Random forest classifier Ripeness level
estimation of papaya
fruit & Counting

(Santos
Pereira et al.,
2018)

RGB imaging Noise removal; Binarization; Edge,color and texture
feature extraction

Connected component analysis; Logical and operation &
Area of rotten part

Apple grading and
sorting

(Abbas et al.,
2019)

Thermal
imaging

Banana digital twin generation Convolutional neural network Quality assessment of
banana

(Melesse
et al., 2022)

RGB imaging Noise removal; Histogram based apple segmentation;
Morphological processing

Lightweight convolutional neural network Apple defect detection (Lee et al.,
2023)

Thermal
imaging

Edge detection; Background segmentation; Thresholding;
Feature extraction

Linear discriminant analysis; Support vector machine;
Random forest; K-nearest-neighbors & Logistic
regression classifiers

Blueberry defect
detection

(Kuzy et al.,
2018)

Multispectral
imaging

Color analaysis for brown and healthy part detection
(using smart color inspector); Browning ratio using
logarithmic analysis

PLS for regression; ANN for classification Internal mango
browning detection

(Gabriels
et al., 2020)

RGB imaging Video to image conversion; Data labeling; MobileNetv2 for
feature extraction

Path-Aggregation Feature Pyramid Network Citrus sorting (Chen et al.,
2021)

RGB - Red-green-blue; ROI - Region of interest; PLS - Partial least square; ANN - Artificial neural network.
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final image, defected fruit was identified. For good apple, resultant area
would be zero. Melesse et al. (2022) proposed a new approach for qual-
ity assessment of banana fruit using digital twin method. The virtual
replica was created based on thermal imaging data. The digital twin ex-
actly replicated the original fruit regarding shape, size, and properties
while reflecting the storage related changes occuring in the actual
fruit. Thermal camera was connected to Internet of things (IoT) cloud
services that utilized SAP Edge services for storage and monitoring of
digital replica of the fruit. Thermal camera was used to take images at
different stages of storage. The classification into four classes including
rotten, fresh, good and bad was done using deep learning. Training
was done in SAP intelligent service using feed forward convolutional
neural network. They achieved an accuracy of 99%. Lee et al. (2023) pro-
posed an apple defect detection system based on multicamera input.
They used three cameras and rotation mechanism to completely and
uniformly capture the complete surface area of an apple. They proposed
an apple segmentation algorithm that utilized pyramid downsampling
method to resize the image while keeping the shape, and then based
on RGB color features performed apple segmentation. For resizing, min-
imum enclosing bounding rectangle was found and the image was
cropped to only retain the apple area. CNN-based classification resulted
in an accuracy of 93.8%. Kuzy et al. (2018) proposed a blueberry defect
detectionmethod based on thermal imaging. Images from two different
cultivars of blueberries were obtained for classification. Destructive
evaluation of bruised area was done and the images were analyzed to
obtain the bruised area index which corresponded to the percentage
of pixels in bruised tissue. Number of pixels in bruised area was found
using edge detection and thresholding on green channel of destructive
evaluation images. This feature was extracted for comparison with the
classification results. Thresholding was performed on frames of berry
videos to extract berry pixels. Time domain and frequency domain fea-
tures were extracted. Five classifiers including linear discriminant anal-
ysis, SVM, random forest, logistic regression, and K-nearest-neighbors
were selected and their performance was compared. Best classification
accuracy was obtained from logistic regression classifier. Gabriels et al.
(2020) determined healthy versus non-healthy mangoes based on in-
ternal browning inmango halves using visible andnear infrared spectra.
Browning index was calculated from mango halves images using smart
color inspector (WUR, 2017). Ratio of color pixels of healthy and brown
parts were determined. The natural logarithm of the ratio was taken to
calculate internal browning in the mango. Classification was done by
taking threshold on the calculated ratio and assigning class label 0 to
mango with internal browning, and 1 to healthy mango using artificial
neural network. PLS-based regression modeling was performed to find
relation between spectra and the browning ofmango. 83% test accuracy
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on classification was reported. Chen et al. (2021) designed a system for
sorting of oranges into three classes including healthy,mechanical dam-
aged, and with skin lesions. A commercially available citrus processing
line was used including a conveyor belt, webcam and led light for
video recording. Defective fruit was detected using path-aggregation
feature pyramid network (PANet). An algorithm for tracking the fruit
on the conveyor belt using the SORT algorithm was also proposed. The
detector and tracker combined accuracy was reported as 93.6%.

Nturambirwe and Opara (2020) have presented a detailed review
of various techniques used for defect detection in horticulture prod-
ucts. Bhargava and Bansal (2021) present an analysis on various com-
puter vision-based techniques used for fruit and vegetable quality
inspection.

6. Decision making, treatment, and planning

For effective farm management and planning, the first step is to
gather relevant data throughout the crop growth period, from soil
preparation and seeding, to yield estimation and harvest. Spatial
variability is an important factor that refers to variation of different
parameters/conditions within an arable land. These parameters in-
clude variation in water and nutrient requirements, extent of dis-
ease and pest infestations, and other climatic factors that affect
the growth of plants. Crop data collected throughout the growth pe-
riod using multiple sensors helps in determining the spatial vari-
ability, that is useful in making informed decision about the next
crop cycle. This data can be divided into four categories: (a) soil
data including soil fertility and properties; (b) irrigation data in-
cluding water requirements; (c) climate data such as humidity,
wind and canopy temperature; (d) crop data including health and
nutrient information at various growth stages, and quality and
quantity of harvest. After data collection throughout the crop
growth period, next step is the analysis and evaluation of this data
to find the significance of each parameter and it's relevance to
final output. Image analysis deals with the extraction of useful in-
formation from images acquired using various sources. Computer
vision and image processing techniques convert raw data to a
form that is better utilizable by traditional machine learning and
more advanced deep learning techniques for making necessary pre-
dictions and estimations according to the application at hand as de-
scribed in detail in Sections 5.1–5.4. These predictions and
estimations are then conveyed to the farmer, who makes informed
decisions about usage of resources, planning and management.
The farmer is able to select a course of actions that is most profit-
able. From resource management and crop treatments to harvesting



Fig. 9. Decision-making, treatment and planning.
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and retail, effective management is possible. A block diagram, pre-
senting various aspects of decision-making, treatments, and farm
planning using imaging data, is shown in Fig. 9.

6.1. Resource management

One of the advantages of smart farming is better resource manage-
ment. Land resources include soil type, fertility, drainage, and irrigation.
Vision-guided soil monitoring data analysis and predictions can provide
recommendations on the informed usage of fertilizers. Soil moisture
level andwater pattern estimations can help save water by planning ir-
rigation schedules according to thewater requirement. Right amount of
nutrients and water can ensure healthy crops and high yield. Labor and
capital resources management is also possible with the advancement in
smart farming techniques.

6.2. Crop care

Crop monitoring is required at various growth stages to completely
encompass spatial variability information. Using this information,
farmer can make treatment plans accordingly for: (a) site-specific
application of pesticides and herbicides; (b) fertilizer distribution;
(c) weeding. With the predictions on the most likely time of pest
infestation, farmers can not only take preventive measures to reduce
the chances of crop being affected, but can generate maps of identified
areas for targeted spraying that reduces the unnecessary application
of agrochemicals consequently minimizing the cost and increasing
yield.

6.3. Harvest management

Based on the spatial variability in quality and quantity of yield ob-
tained through yield estimationmaps, farmers canmake informed deci-
sions about the optimal timing of harvest. Farmers can plan accordingly
to minimize potential crop damage caused by extreme weather events
by planning to harvest earlier. Based on data analysis and predictions,
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farmer can plan more effectively regarding post-harvest decisions in-
cluding storage and retail.

7. Robotics in agriculture

The field of agriculture is undergoing a transition from traditional
mechanization to the revolutionary automation with the long term
goal of complete automation of agricultural farms. Traditional heavy
farm machinery can cause soil compactness which is a cause of poor
root growth consequently affecting the overall growth of plants. Ad-
vancement in the field of robotics and autonomous systems has shaped
the future of multiple industries including the agricultural sector where
traditional heavy farm equipment is now being replaced with advanced
robotic systems that are intelligent, lightweight, and efficient. To fully
automate the farming processes, robots need to work as a farmer and
be able to ‘see’ and ‘understand’ the scene. State-of-the-art imaging sen-
sors enable the robot to see and latest computer vision and AI tech-
niques allow it to understand the environment. Fig. 10 provides an
overview of robotics in smart agriculture and precision farming.

A fully automated farm may follow an integrated approach that
combines various types of robots and autonomous systemsworking to-
gether in coordination. Ground vehicles can carry heavy loads andwork
for longer duration as compared to aerial vehicles which have limita-
tions on loading and flight time. But aerial vehicles have a birds
eye-view and are good for field mapping and monitoring. By adopting
a cooperative approach, we can optimize the utilization of both vehicle
types, effectively overcoming their individual shortcomings and
unlocking their full potential for flawless operations. Although
multi-robot systems are being investigated for efficient utilization in ag-
ricultural domain (Zhang and Noguchi, 2017; Pretto et al., 2021; Lal
et al., 2017; Roldán et al., 2016; Janani et al., 2016), the research is still
in its early stages, and significant advancements are required before
complex tasks can be executed in real-world working conditions.

Before fully automated farms become a reality, a collaborative ap-
proach may be implemented in which robots work in collaboration
with humans for delicate tasks, such as harvesting of soft fruits, pruning,



Fig. 10. Robotics in agriculture.

S. Ghazal, A. Munir and W.S. Qureshi Artificial Intelligence in Agriculture 13 (2024) 64–83
and spraying (Berenstein and Edan, 2012; Seyyedhasani et al., 2020;
Guevara et al., 2021). Human-robot interaction (HRI) is an emerging
area of research focused on exploring the strategic, social and ethical as-
pects of collaborative work environments, where robots and humans
work together. Vásconez Hurtado et al. (2019) describe various ap-
proaches and challenges for HRI in agriculture. Effective communica-
tion, collaborative problem recognition and action implementation,
and cooperative mission planning are key challenges in HRI. Robots
not only need to be well aware of human presence, but they also need
to predict the behavioral patterns for ensuring a safe and collision-free
work environment.

Robotics technology has significantly strengthened the farming pro-
cess in various ways, some of which are:

1. Data Collection: Robots equipped with latest imaging technolo-
gies and sensory devices are used in data collection for applica-
tions, such as soil monitoring, crop health inspection and
growth pattern estimation. This data is important in understand-
ing the spatial variability of crops, as described in Section 6. It can
be used to create detailed field maps, identify areas requiring
specific treatments, track livestock behavior patterns and opti-
mize resource allocation.

2. Crop Care: Robotic systems employing cameras and machine vision
technologies can be used for early detection of pest infestations and
nutrient deficiency in crop that enables targeted application of agro-
chemicals on specified areas or individual plants consequently
achieving high crop production and reduced chemical usage for envi-
ronment sustainability.

3. Automated Farming Tasks: Robotic systems can be used for automa-
tion of various farming operations like seeding, weeding, planting,
and harvesting. These automated systems are more efficient as
compared to human workers and can work round the clock without
intervention and provide a repeatable and reliable solution to the
otherwise tedious farming operations. These automated systems im-
prove the quality of tasks due to high precision, reducing the labor
cost and increased productivity.

4. Decision-Making: Robotics technology is used to generate vast
amount of data that makes data-driven decision making possible.
With the help of state-of-the-art machine learning techniques, artifi-
cial intelligence algorithms and machine vision technology, farmers
can gain invaluable insights into predicting and estimating various
aspects of farming processes. This enables them to make informed
decisions and optimize farming operations consequently enhancing
the farm productivity.

Robotics technology has transformed the agriculture sector to be-
come more sustainable and efficacious. The implementation of robotics
technology in agriculture allows many advantages including reduced
cost, improved productivity, enhanced farm management and over-
coming the labor shortages.
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8. Advances and challenges in fully automated smart farming

Each farming operation in fully automated smart farms involves a
series of complex tasks that require precise coordination and decision-
making,which canbe challenging to automate. One step towards the re-
alization of smart farms is the recent advancement in IoT-based sensing
technology (Ullo and Sinha, 2021; Grgić et al., 2020; Friha et al., 2021).
IoTwith reference to agriculture refers to the network of interconnected
devices, sensors, and equipment, including robots, deployed in farming
operations to collect, transmit, and analyze data. In smart farms, mobile
devices often rely on Internet connectivity for communication, espe-
cially when accessing cloud-based services. However, in areas with
low connectivity, the IoT devices can communicate using wireless tech-
nologies like LoRaWAN (Bonilla et al., 2023) or Zigbee (Ramya et al.,
2011) and then connect to the Internet through a gateway device,
using a more reliable connection such as satellite or cellular networks.
This enables data collection and transmission even in areaswith limited
Internet access, enhancing the effectiveness of smart farm technologies.
Satellite IoT (Liu et al., 2023) is particularly valuable in agriculture,
allowing for monitoring of large, remote farms and providing wide-
area coverage for farm-monitoring applications.

Smart farms leverage mobile edge devices including UAVs, robotic
harvesters, autonomous tractors, and other machinery, to automate
tasks. However, deploying computer vision models on these edge de-
vices pose challenges (Munir et al. (2021)). One issue is the need to
limit model complexity and size due to constraints in computational
power, memory, and battery life. Real-time processing is also challeng-
ing due to these resource constraints. Moreover, environmental factors
in which these edge devices operate (e.g., lighting conditions, weather,
and terrain) can affect the reliability and performance of these devices.
To integrate smart edge devices with existing systems, a collaborative
approach and specialized knowledge are required. To facilitate seamless
integration and data exchange between IoT systems, lightweight proto-
cols such as MQTT (Masdani and Darlis, 2018), which is designed for
low-bandwidth, high-latency, or unreliable networks, and CoAP (Tariq
et al., 2020), which is designed for constrained devices and networks,
can be used. To overcome challenges like limited resources, lightweight
and efficient computer vision models tailored for edge devices are cru-
cial. Techniques like model compression, quantization, and efficient
neural network architectures reduce complexity and resource require-
ments without sacrificing performance (Munir et al., 2024; Li et al.,
2023; Tang et al., 2021; Hassan andMaji, 2022). Moreover, it is impera-
tive to develop computer vision models that can adapt to challenges
posed by harsh agricultural environments. Data augmentation tech-
niques, such as adding noise or altering lighting conditions to the aug-
mented data, can further enhance the robustness of these models.
Development of low-cost hardware platforms and open-source soft-
ware frameworks are necessary to enhance the affordability of smart
agriculture solutions. Additionally, addressing resistance to change
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and/or modernizing farming practices among traditional farmers is
vital. Convincing these farmers to adopt disruptive technologies would
require a combination of education and tangible evidence of the bene-
fits these technologies can bring to farming. Furthermore, ensuring
data security and privacy in smart agriculture is essential. Techniques
such as data encryption, secure communication protocols, access con-
trol mechanisms, and robustness against adversarial attacks must be
implemented to protect against unauthorized access and cyber-
attacks, and to enhance the trustworthiness of digital data and the AI
models.

To overcome these challenges, researchers must engage in innova-
tive research for designing computer vision models tailored for agricul-
ture and edge deployment considering the specific requirements and
constraints of the challenging agricultural environment. Furthermore,
outreach to farmers is very important to showcase the benefits of mod-
ernization and incorporation of digital and precision agriculture in
farming practices. Overall, integrating IoT, mobile edge devices, and
computer vision in smart agriculture has the potential to revolutionize
the farming industry, and enhancing its efficiency, sustainability, and re-
silience.

9. Conclusions

This survey provides an extensive exploration of the digital life cycle
of crops in precision agriculture, with a particular emphasis on the uti-
lization of computer vision technology. The primary focus of this study
revolves around reviewing the diverse techniques found in the litera-
ture which contribute to the development of vision-guided intelligent
automated systems for precision farming.

This paper first discusses various pertinent cropmetrics used in dig-
ital agriculture. Then this paper elaborates the usage of imaging and
computer vision techniques in various phases of digital life cycle of
crops in precision agriculture. The survey initially discusses various im-
aging technologies currently employed by researchers for acquiring es-
sential imaging data in digital agriculture. Subsequently, it gives a brief
overview of image stitching and photogrammetry for agricultural field
mapping. A critical aspect of this study is a detailed discussion of
image analysis and computer vision techniques applied to important
precision farming tasks, with a particular focus on analysis and detec-
tion techniques for soil monitoring, stress detection, targeted spraying,
yield estimation, and quality control. Furthermore, this paper provides
a discussion on the implementation and utilization of analysis results
for crop-planning and decision-making. Moreover, this survey provides
a comprehensive discussion on the application of computer vision-
assisted robotics in precision farming. Finally, the survey concludes by
outlining the challenges in fully automated smart farming.

While image analysis techniques have been well-established in var-
ious industries, their successful implementation in vision-based analytic
systems for precision agriculture tasks presents several challenges that
need to be addressed. The performance of visual systems is largely
affected by environmental factors like lighting conditions, weather
changes, and occlusions caused by vegetation. Moreover, a vast amount
of training data is required for effective execution of computer vision
models. Additionally, obtaining accurate ground truth labels for big
agricultural fields can be subjective and challenging. Another key chal-
lenge inmaking robust vision-guided intelligent systems for agriculture
is lack of generalization of computer visionmodels that canwork across
multiple crop types. Models trained on one crop may not perform well
on others, requiring extensive domain adaptation techniques. For fully
autonomous farms, real-time detection, monitoring, and/or prediction
of crop parameters are crucial; however, processing large amounts of
image data in real-time can be computationally intensive and may
require specialized hardware.

Addressing these challenges requires a combination of advanced
computer vision techniques, data collection strategies, and domain ex-
pertise in agriculture. Collaboration between computer scientists,
80
agronomists, and agricultural experts is essential to develop robust, ac-
curate, and practical stress detection systems that can contribute to
more efficient and sustainable crop management practices. Based on
the discussions in this paper, it can be concluded that, while the last de-
cade has witnessed remarkable advancements in vision-guided intelli-
gent systems, their implementation in the agricultural domain is still
at an embryonic stage. The formidable challenges posed by harsh field
conditions, unpredictable climatic factors, and various influences on
crop conditions emphasize the need for extensive research and thor-
ough field testing. Only through persistent exploration and engagement
with farmers, the vision of fully automated agricultural farms can be-
come a reality.
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