
Design and Comparative Evaluation of GPGPU- and
FPGA-based MPSoC ECU Architectures for Secure,

Dependable, and Real-Time Automotive CPS
Bikash Poudel∗, Naresh Kumar Giri†, and Arslan Munir‡

∗ Department of Computer Science and Engineering, University of Nevada Reno
†‡Department of Computer Science, Kansas State University

Email: ∗bpoudel@nevada.unr.edu, †ngiri@ksu.edu, and ‡ amunir@ksu.edu

Abstract—In this paper, we propose and implement two
electronic control unit (ECU) architectures for real-time au-
tomotive cyber-physical systems that incorporate security and
dependability primitives with low resources and energy overhead.
These ECUs architectures follow the multiprocessor system-
on-chip (MPSoC) design paradigm wherein the ECUs have
multiple heterogeneous processing engines with specific function-
alities. The first architecture, GED, leverages an ARM-based
application processor and a GPGPU-based co-processor. The
second architecture, RED, integrates an ARM based application
processor with a FPGA-based co-processor. We quantify and
compare temporal performance, energy, and error resilience of
our proposed architectures for a steer-by-wire case study over
CAN, CAN FD, and FlexRay in-vehicle networks. Hardware
implementation results reveal that RED and GED can attain
a speedup of 31.7× and 1.8×, respectively, while consuming
1.75× and 2× less energy, respectively, than contemporary ECU
architectures.

Index Terms—Automotive, cyber-physical systems, GPGPU,
FPGA, steer-by-wire, security, dependability

I. INTRODUCTION AND MOTIVATION

Contemporary automobiles integrate a multitude of hetero-
geneous digital processors (also called electronic control units
(ECUs)), radio interfaces, in-vehicle networks and protocols,
and hundreds of megabytes of complex embedded software.
Next generation of automobiles (also known as cybercars) will
further escalate the profusion of novel distributed control ap-
plications. Emergence of x-by-wire systems, where electronic
controllers replace traditional mechanical and/or hydraulic
subsystems, is a prominent example of recent modernization
in the automotive industry. However, x-by-wire systems (e.g.,
steer-by-wire, brake-by-wire, etc.) have stringent real-time
performance and reliability requirements, which pose signifi-
cant challenges for implementation over traditional, bandwidth
limited controller area network (CAN). Since CAN is the most
prevalent protocol for in-vehicle communication and most of
the car manufacturers are reluctant to adopt a completely new
protocol, CAN with flexible data rate (CAN FD) is a viable
replacement of CAN for x-by-wire applications. Furthermore,
FlexRay is another recent protocol that is well suited for x-
by-wire applications as the protocol offers high speed data
transfer and fault tolerance features.

As electronic components permeate into safety-critical auto-
motive functions, integration of security and dependability in
cybercar design becomes imperative. The continuously escalat-
ing complexity of automotive systems and increasing integra-
tion with wireless entities (e.g., smart phones) exacerbate the

security vulnerabilities of cybercars ([10]). Furthermore, harsh
operational environment combined with external noise and
radiation render ECUs vulnerable to permanent and transient
faults. Hence, in order to make cybercars robust to faults and
security vulnerabilities, cybercars must incorporate depend-
ability and security features. When retrofitting the in-vehicle
architectures with security and dependability mechanisms, a
prime challenge is to ensure that hard real-time constraints of
the automotive cyber-physical applications are not violated.

The evolving nature of cyber-attacks presents another chal-
lenge in integrating security primitives in automotive cyber-
physical systems (CPS). The advancements in cryptanalysis
and attack technologies might render various security mech-
anisms ineffective. Most of the global initiatives on future
automotive CPS focus on design of dedicated security so-
lutions that could be embedded in future automotive ECUs.
These security solutions are based on one of the following
standards [15]: secure hardware extension, hardware security
module, and trusted platform module, all of which are non-
fault-tolerant (NFT) and are dedicated inflexible hardware
designs. Hence, a successful attack on the security mecha-
nisms embodied in these standards would require a complete
replacement of the ECUs leveraging these security standards,
which would be very costly or in worst case, infeasible.
Unfortunately, the problem is not only limited to non-fault
tolerance and inflexibility of these security mechanism. The
constant craving of automotive industry to accommodate new
cybercar applications (e.g., voice recognition and object de-
tection for autonomous car-maneuvering system, etc.) requires
ECUs with high computational power. These novel cybercar
applications may not be effectively handled by contemporary
microcontroller-based ECUs.

To address the above mentioned security, dependability, and
performance challenges in automotive CPS design, we devise
novel multiprocessor system-on-chip (MPSoC) based ECU
architectures which are secure, dependable, high-performance,
energy-efficient, and flexible. We consider the interplay be-
tween temporal performance and dependability in our ECU
designs. We emphasize that although temporal performance
(measuring timing constraints) is a quality of service (QoS)
measure, the temporal performance must also be consid-
ered as a dependability measure beyond a certain critical
threshold as the driver can totally lose control of his/her
vehicle if the response time exceeds that critical threshold.

To demonstrate temporal performance, energy efficiency, and
error resilience of our proposed architectures, we consider
steer-by-wire (SBW) as a case study. We further compare
the performance and energy efficiency of our proposed ECU
architectures with a baseline ECU design (BED) that embodies
the security and dependability features for future cybercars.

Our main contributions are:
• We propose two novel secure and fault-tolerant MPSoC-

based ECU architectures: a general-purpose graphics pro-
cessing unit (GPGPU)-based ECU design (GED) and
a reconfigurable ECU design (RED), which are able
to effectively meet security, dependability, and real-time
requirements of automotive CPS in an energy-efficient
manner.

• We implement our proposed GED architecture in
NVIDIA’s Jetson TK1 board, and our proposed RED
architecture in Xilinx Automotive Spartan-6 field-
programmable gate array (FPGA) board. Furthermore,
we consider a baseline ECU design (BED) architec-
ture, which is implemented in NXP’s automotive-grade
iMX6Q SABRE board (more in Section III-B).

• We model a SBW subsystem and quantify and compare
the temporal performance, energy, and error resilience of
our proposed ECU architectures.

• We compare response times of a SBW subsystem leverag-
ing our proposed ECU architectures over three in-vehicle
networks: CAN, CAN FD, and FlexRay.

II. RELATED WORK

Various previous works have studied security of automotive
systems. Koscher et al. [10] have examined multitude of
internal and external attack surfaces of a modern automobile
through which an adversary could infiltrate in-vehicle net-
works to control automotive subsystems (e.g., brakes, steering
wheel) while ignoring the driver’s input. This work is followed
by a scores of studies on embedding security primitives in in-
vehicle networks. A number of prior works including [12] have
examined integration of message authentication codes (MACs)
in CAN data frames to secure in-vehicle data interaction.
Furthermore, in order to defend against masquerade and replay
attacks, [14] have proposed MACs with counters. Although
these methods provides message authentication, these ap-
proaches do not provide confidentiality of in-vehicle data. Sojo
et al. [15] have surveyed various specifications, standards, and
guidelines encompassing secure hardware extensions, hard-
ware security modules, and trusted platform modules, etc., that
could provide security for in-vehicle communications. These
studies only consider security aspects but fail to analyze the
simultaneous integration of security and dependability in real-
time automotive CPS which is cardinal to safety and security
of modern automobiles.

The dependability for automotive embedded systems has
been explored by a number of earlier works. Beckschulze
et al. [4] have investigated FT approaches based on dual-
core microcontrollers. Baleani et al. [3] have discussed various
FT architectures for automotive applications, such as lock-step

dual processor architecture, loosely-synchronized dual proces-
sor architecture, and triple modular redundant architecture.
However, these works have not considered the interplay of
performance, dependability, and security for modern automo-
tive CPS. Munir et al. [13] is the first work that has proposed
a multicore ECU based design for secure and dependable
cybercars. Yet, this work has not implemented the proposed
approach on an automotive-grade processor. Furthermore, this
ECU design approach may not scale to incorporate computa-
tionally intensive cybercar applications under strict real-time
constraints.

III. SECURE AND DEPENDABLE APPROACH FOR
CYBERCAR DESIGN

This section first elaborates on security threat model of
automotive CPS. We then elucidate a secure and dependable
approach for cybercar design which we refer to as baseline
ECU design (BED).
A. Security Threat Model

With a large number of ECUs operating inside cybercars,
there are plenty of security attack surfaces that impact most
of the in-vehicle systems. This situation is further exacerbated
by the connection to increasingly wide range of external
networks, from Wi-Fi, cellular networks, and the Internet
to service garages, toll roads, drive-through windows, gas
stations, and a rapidly growing list of automotive after-market
applications. In order to elucidate the need for incorporating
security primitives in ECUs, we discuss various methods in
the following by which an adversary could penetrate the in-
vehicle networks (e.g., CAN, FlexRay) to accomplish various
security attacks.
Need for confidentiality: In-vehicle networks cart a mix of
operational and personally identifiable information, such as
current location, previous destinations, navigation history, call
history, microphone recordings, and financial transactions, etc.
An adversary invading an in-vehicle network could perform
passive eavesdropping and traffic analysis, thus, obtaining crit-
ical information about the driver and the vehicle. In addition,
for the x-by-wire systems, if an adversary knows the initial
location of the vehicle, then, by eavesdropping on the steering
angle, accelerator value, and braking value, the adversary
could track the car which might put the driver and passengers
at risk. Hence, the confidentiality of messages and data over
in-vehicle networks is critical for operational security, privacy,
and consumer trust.
Need for authentication and integrity: An attacker invading
an in-vehicle network may attach his/her own device or com-
promise a valid user device (e.g., a cell phone attached to the
infotainment system) in order to send fraudulent (or malicious)
requests (commands, codes, or messages) into the system.
Furthermore, the attacker’s device may impersonate a valid
ECU or gateway for malicious activities that may jeopardize
safety of the driver and the vehicle. Additionally, the adversary
may perform spoofing attacks by actively injecting and/or
modifying messages in the in-vehicle network. Thus, entity
authentication and message integrity verification are required
in in-vehicle networks to defend against these vulnerabilities.

FlexRay
Bus

Fig. 1: BED Architecture.
B. Baseline ECU Design Approach

We leverage our BED approach in an enhanced version of a
prior secure and dependable automotive design [13]. The BED
approach is implemented in NXP’s iMX6Q SABRE automo-
tive development board. The BED represents the contemporary
microcontrollers-based design used in conventional automotive
ECUs. The basic security and dependability features used
in our proposed ECUs are incorporated in BED. Then, the
GED and the RED architectures are compared with BED
architecture to access the gains in performance and energy
of our proposed designs.
Security: Our BED approach leverages AES-based encryption
and SHA-3-based HMAC to integrate confidentiality, integrity,
and authentication. Fig. 1 shows our security approach used
in sender and receiver FlexRay nodes. The sender node uses
“encrypt-and-MAC” security approach, where the 128-bit mes-
sage (64-bit ECU message plus 64-bit counter) is encrypted
in parallel with HMAC computation using separate 128-bit
secret keys. The counter is concatenated with the plaintext
message to defend against replay attacks. The AES encryption
module generates 128-bit ciphertext (CT) and HMAC module
generates 256-bit MAC (message digest). The CT and SHA-3
based HMAC are concatenated and sent to receiver node via
FlexRay bus. At the receiver node, the CT is decrypted by the
AES decryption module which recovers the original plaintext
message. This plaintext is used to compute a local HMAC
by the SHA-3-based HMAC module at the receiver. The local
HMAC is compared with the received HMAC to confirm the
integrity of the received message. If the received message has
lost its integrity, then the message is retransmitted.

We have used advanced encryption system (AES-128) to
provide confidentiality, and secure hash algorithm-3 (SHA-
3) based message authentication code to provide entity and
message authentication. The basis of AES security is its ro-
bustness to brute force attacks as the key space of AES-128 is
3.4×1038 keys. Even at a sustained rate of 1 terakeys/second,
it would take 1019 years to exhaust this key space. SHA-
3 provides 128-bit security level for collision attacks and
256-bit security strength for pre-image and second pre-image
attacks. Additionally, to strengthen the security primitives, the
secret keys for AES and HMAC are stored in secure tamper
resistant memory [9] and are refreshed deterministically over
time by participating ECUs. Hence, our approach is resistant
to security attacks described in Section III-A.

Furthermore, the dependability feature incorporated into
the ECU makes our ECU robust against the fault injection
attacks like differential fault analysis attack [5]. This is due to

the resilience of our ECU architecture against the soft-errors
caused by the transient faults and the fault injection attacks
injects the transient faults that causes the soft-error in the ECU.
Dependability: The dependability requirements as stipulated
in ISO 26262 [15] require that at least one critical fault
must be tolerated by automotive applications without loss
of functionality. The BED leverages FT using redundant
multi-threading (FT-RMT) to provide dependability. Redun-
dant multi-threading (RMT) uses two threads–a master thread
and a slave thread, which execute same operations with the
same data set. In FT-RMT, the results of master and slave
threads’ operations are compared at the end of computation
by the master thread. If there is an error, then recomputation
is carried out on both the threads. The rationale behind using
recomputation after error is that recomputation rectifies soft
errors caused by transient faults. FT-RMT can tolerate one
permanent fault and multiple soft errors, and therefore adheres
to the dependability requirements specified in ISO 26262
standard.

IV. PROPOSED SECURE AND DEPENDABLE
MULTIPROCESSOR SYSTEM-ON-CHIP BASED ECU

ARCHITECTURES

Cybercars integrate a multitude of microcomputer units as
ECUs to implement different automotive functions. As dis-
cussed in Section I, the security features provided by various
contemporary standards [15] are often implemented in dedi-
cated inflexible hardware and are not adaptive to evolving na-
ture of security attacks. Additionally, future automotive ECUs
may require high computational power to integrate newly
emerging cybercar applications and services. To overcome
these limitations in prior ECU designs, we propose flexible
and scalable ECU architectures that simultaneously integrate
security and dependability primitives with low resources and
energy overhead.

A. Generalized Version of the Proposed MPSoC-based ECU
Architecture

Fig. 2 shows the generalized internal architecture of the
proposed MPSoC-based ECU. The ECU consists of an ARM
(Advanced RISC Machine)-based application processor as
the main processor and one or more application-specific co-
processors. This application processor provides interface to
the in-vehicle networks (e.g., CAN, CAN FD, FlexRay, LIN,
MOST, etc.), external sensors, other ECUs, and gateways.
Furthermore, this application processor executes control al-
gorithms, performs data aggregation from various sensors,
and outsources computationally intensive applications to the
application-specific co-processors. The application-specific co-
processor performs compute-intensive applications like im-
age, audio, and video processing. The application-specific
co-processor could be a digital signal processor (DSP), or
crypto processor that carries out asymmetric and symmetric
cryptographic operations, or Viterbi processor for the realiza-
tion of maximum-likelihood decoding of convolution codes,
etc. The application processor and co-processor communi-
cates via advanced system bus (ASB) or advanced high-

P
ro

g
ra

m
m

a
b

le
 I

O

AHB: Advanced High-performance Bus

ASB: Advanced System Bus

APB: Advanced Peripheral Bus

a

b

Fig. 2: A basic MPSoC-based ECU architecture.

performance bus (AHB) [2]. The application processor of
one ECU can communicate with the application processor of
another ECU through in-vehicle networks (e.g., CAN, CAN
FD, or FlexRay).

During normal operation, the application processor collects
data from the sensors. If this data is to be sent to another
ECU, the application processor first sends the data to the co-
processor via high-speed AHB. The co-processor embeds the
security primitives into the data thus creating a secure data and
sends it back to the application processor. This is represented
by path ”a” in Fig. 2. The secure data is send to another ECU
via path ”b”.

In our work, we have used two types of application-specific
co-processor viz., GPGPU and programmable logic array.
Based on the type of co-processor used, we have named
the architecture as GED (refer Section IV-B) or RED (refer
Section IV-C). These processors are responsible to provide
the cryptographic services, such as confidentiality, message
authentication, and message integrity. Our work does not focus
on the ECU authentication service. SRAM-based physical
unclonable functions [6] is one solution which can be deployed
for ECU authentication.

We try to meet three goals in our ECU design. First design
goal is to provide security services to the ECU. In order to
provide security services to ECU, we implement the crypto-
graphic algorithms in the co-processor. Second design goal
is to provide dependability (or fault tolerance). We leverage
FT based on redundant multi-threading (FT-RMT) for GED
and dual modular redundancy based FT technique for RED.
Finally, to assess whether our ECU performs its tasks without
violating the real-time deadline of the tasks, we create a timing
model of a SBW automotive subsystem that uses our ECU to
provide steering functionality to the vehicle. This timing model
is discussed in detail in Section V.

In subsequent subsections, we will discuss the internal
architecture of the GED and RED.

PCIe BUS
SENDER FLEXRAY

NODE

FLEXRAY BUS

AP:APPLICATION PROCESS TB: THREAD BLOCK SM:SHARED MEMORY

ENAES: ENCRYPTION AES DEAES: DECRYPTION AES

Fig. 3: GPGPU-based ECU design architecture.

B. GPGPU based ECU Architecture

Fig. 3 depicts the detailed GED architecture which has
the same high level architecture as in the generalized version
discussed in Section IV-A. Here, an ARM-based application
processor (AP) is the master processor and a GPGPU-based
processor is the slave processor (or co-processor) that commu-
nicates with AP via a high speed internal bus like AHB. The
AP provides interface to the in-vehicle networks, external sen-
sors, other ECUs, and gateways. Furthermore, the AP executes
control algorithms, performs data aggregation from various
sensors, and outsource computationally intensive applications
(e.g., image, audio and video processing, cryptographic oper-
ations, etc.) to the GPGPU-based co-processor. We implement
FT symmetric cryptographic primitives in GPGPU-based co-
processor to provide security and dependability feature to
the ECU. In addition, we have used this fault-tolerant (FT)
cryptographic primitives implementation as an example use
case for comparing the temporal performance and energy
consumption of our proposed ECUs, viz., BED, GED, and
RED.
Security: The cryptographic module with AES-128 encryp-
tion and SHA-3-based HMAC are implemented in GPGPU-
based co-processor. The functional architecture of GED is
identical to that of BED (refer Section III). However, the
GED processes a batch of eight 128-bit messages at once
unlike the BED which processes a single 128-bit message at
a time. We adopt this batch processing mechanism to utilize
the massive computational power of GPGPU and to enhance
the throughput of the cryptographic module. Furthermore, the
implementation in GPGPU exploits the largely byte-parallel
operations of AES-128 and lane-parallel operations of SHA-
3. Our implementation adopts parallel granularity of byte-per-
thread for AES-128. Each byte of AES-128 is mapped to a
thread in GPGPU. A thread-block with number of threads

equals to warp size of 32 is used to compute a complete
AES-128 encryption/decryption. All threads in one warp are
executed in a single instruction multiple data (SIMD) fashion.
For SHA-3, parallel granularity of 8-byte (a lane) per thread is
used. A thread-block with 32 threads is used to compute com-
plete SHA-3-based HMAC. Furthermore, frequently accessed
S-boxes, round constants, and other index constants used in
AES-128 and SHA-3 are stored on the on-chip shared memory
of GPGPU to ensure fast memory access.

At the sender FlexRay node, eight plaintexts (ECU mes-
sages) are processed at once. For NFT mode of operation,
the processing is carried out in GPGPU by launching 16
thread-blocks. Eight of these thread-blocks are used for AES-
128 computation and eight are used for HMAC computation.
Each thread-block processes one ECU message. AES-128
and HMAC are computed in parallel thread-blocks because
they are independent operations. However, at the receiver
FlexRay node, HMAC computation requires the output of AES
computation. Hence, at first, eight thread-blocks are launched
to compute AES-128 (decryption) to recover plaintexts of the
eight ciphertexts received from the sender node. Then, eight
new thread-blocks are launched for HMAC computation of the
recovered plaintexts.
Dependability: The design leverages FT-RMT (refer Sec-
tion III) to provide resilience against soft errors occurring
due to transient faults. The FT-RMT is achieved by using
redundant thread-blocks. Each thread-block, and its redundant
counterpart, performs a complete AES (or HMAC) compu-
tation. In the FT-RMT mode (Fig. 3), eight ECU messages
are processed using 32 GPGPU thread-blocks: sixteen of
these thread-blocks are used for AES-128 and sixteen are
used for HMAC computation. In each group of 16 thread-
blocks, eight are master thread-blocks and eight are redundant
thread-blocks. Each master and redundant thread-block pair
processes one ECU message. The results obtained from the
master and its redundant thread-block are compared to detect
computational errors. The thread-blocks must be synchronized
to compare the results. The synchronization is carried out by
employing a CPU synchronization technique. If computational
errors (soft errors) are detected, then recomputation is con-
ducted.

In addition to error resilience, the fault tolerance provides
resistance against the fault attacks that tries to inject soft-errors
in the operating ECUs.

C. Reconfigurable ECU Architecture

The high-level architecture of RED is similar to that of
generalized MPSoC architecture discussed in Section IV-A.
The ARM-based AP has same set of functionalities for both
RED and GED. In RED, the AP outsources compute-intensive
applications to an FPGA-based co-processor. Fig. 4 shows the
internal architecture of RED.
Security: The cryptographic module is implemented in an
FPGA-based co-processor and provides three security ser-
vices: confidentiality, message integrity, and authentication.
The FPGA-based co-processor computes AES encryption and

Fig. 4: Reconfigurable ECU design architecture.

HMAC of the ECU message at the sender node. The co-
processor then relays the concatenation of the CT and the
message digest to the AP which then transmits it to the
receiver node via FlexRay bus. The receiver AP then relays
the received concatenation to its FPGA-based co-processor.
The co-processor, first, decrypts the CT to recover the original
plaintext and then computes HMAC of the plaintext to gener-
ate local message digest. The local message digest is compared
with the received message digest to check the integrity of the
received message. If the message has lost its integrity, then
the message is retransmitted.
Dependability: The cryptographic module implemented in
FPGA is resilient to multiple transient faults and one per-
manent faults. FT is provided by a combination of three
methods: dual modular redundancy (DMR) with an extra
spare module (marked by * in Fig. 4), Berger code based to-
tally self-checking (TSC) combinatorial circuits [11], and dy-
namic partial reconfigurability of Xilinx Automotive Spartan-6
FPGA [7]. This FT mechanism is named as FT using self-
reconfiguration in dual modular redundant system (FT-SR-
DMR). DMR is used to detect errors in computation; TSC
design method is employed to design a combinatorial circuit
that flags itself as erroneous in case of faults; and dynamic
partial reconfiguration is exploited to heal faulty modules.
At both sender and receiver nodes, AES and HMAC mod-
ules in DMR computes CT and message digest, respectively,
from the ECU message. The results of redundant modules
are compared by comparators in triple modular redundancy
(TMR). Comparators are implemented in TMR because the
comparator circuit is simple and has a smaller footprint.
Furthermore, TMR helps to localize the faulty comparator
whenever there is fault in the comparator logic. The results of

HW Force FeedbackFA Control

HWS1 HWS2 HWS3 HW Motor1 HW Motor2

FAS1 FAS2 FAS3FAA Motor1 FAA Motor2

Fig. 5: SBW architecture.

comparators are checked by a Berger code based TSC voter.
The voter sends its voting result to a self-checking control
unit (SCCU). The SCCU generates the control signals for
the cryptographic module and stores the result of recent AES
and HMAC in a buffer memory. Whenever there is error in
AES (or HMAC) computation, the SCCU activates the spare
AES (or HMAC) module. The spare module(s) then computes
the results corresponding to the input for which there was
an error. The results of the spare module is then compared
with the results of regular AES (or HMAC) module that were
stored in buffer to localize the faulty module. The SCCU
then activates the reconfiguration subsystem which performs
partial reconfiguration of the faulty module. The cryptographic
module operates with the spare module(s) during the reconfig-
uration period. The rationale for using the spare module during
reconfiguration is that the reconfiguration takes longer time (in
terms of tens of millisecond) and the cryptographic module
must be functional during this period to fulfil the security and
dependability requirements of automotive CPS.

V. MODELLING AND ANALYSIS OF A STEER-BY-WIRE
SUBSYSTEM

This section expands on the timing model of a SBW subsys-
tem that leverages our purposed ECUs to incorporate security
and dependability. We use this timing model to compute the
quality of service (QoS) and behavioral reliability of the SBW
subsystem.

A. Steer-by-Wire Operational Architecture
In an SBW subsystem, heavy mechanical steering column

is substituted by electronic systems to reduce vehicle weight.
This eliminates the risk of steering column entering into the
cockpit in the event of a crash. The SBW subsystem provides
the same functionalities as conventional steering column: front
axle control (FAC) and hand-wheel (HW) force feedback.
The SBW architecture is depicted in Fig. 5. This paper
focuses only on the FAC part to compute response time and
error resilience of the FT approaches used in our proposed
ECUs. Furthermore, the SBW subsystem is made FT by using
redundant ECUs, sensors, and actuators. Point-to-point links
connect ECUs to sensors and ECUs to actuators. For ECU-
to-ECU connection, we experiment on all three commercial
automotive buses: CAN, CAN FD, and FlexRay. We evaluate
and present a comparison of the SBW response time and
error resilience when using these three buses. The operation
of our SBW subsystem is same as in [13], however, our SBW
subsystem leverages our proposed ECU architectures.

B. Timing Model of SBW to Compute the QoS and Behavioral
Reliability

The end-to-end delay/response time (τr) is the delay be-
tween the driver’s request at the HW and the corresponding re-
sponse at the front axle actuator (FAA). τr is regarded as a QoS
metric but can also be interpreted as a dependability metric that
impacts automotive safety and reliability if it exceeds a critical
threshold value τmax

r , which is determined by automotive
original equipment manufacturers (OEMs). Furthermore, the
probability that the worst-case response time is less than the
critical threshold is termed as behavioral reliability. In the
following, we analytically model the response time for the
SBW subsystem and error resilience of our FT approaches.

Response time (τr) is modeled as the sum of pure delay
(δp), mechatronic delay (δm), and sensing delay (δs), as,
τr = δp + δm + δs. The mechatronic delay is introduced by
the actuators (electric motor in our case). The sensing delay
is the delay during the interaction of application processor of
ECU with the sensors. The sensing and mechatronic delays
are bounded by a constant value of 3.5ms [8]. For our
secure and dependable approach, the pure delay (δp) includes
ECUs’ computational delay for processing the control algo-
rithm (depends on the execution time of application processor),
computational delay for processing the incorporated security
and dependability primitives (depends on the execution time
of the co-processor), and transmission delay including bus
arbitration (depends on the type of in-vehicle network used
like CAN or CAN FD). Mathematically, pure delay (δp) for
our FAC function can be written as,

δp = rcc1 · δecu1hw + rtc · δbus + rcc2 · δecu1faa) ≤ δmax
p , (1)

where δecu1hw and δecu1faa denote the computation time at HW-
ECU1 and FAA-ECU1, respectively; δbus represents the trans-
mission time for a message on an in-vehicle bus (CAN, CAN
FD, or FlexRay) from HW-ECU1 to FAA-ECU1; rcc1 and
rcc2 represent the number of recomputations that are needed to
be done at HW-ECU1 and FAA-ECU1, respectively, to rectify
soft errors; rtc represents the number of retransmissions
required for an error-free transmission of a secure message
over in-vehicle bus; and δmax

p represents maximum allowable
δp. According to Wilwert et al. [16], with a minimum tolerable
QoS score of 11.13, the critical limit for pure delay δmax

p is
35 ms, beyond which the vehicle becomes unstable and risks
the driver’s safety.
δecu1hw and δecu1faa are calculated as the sum of execution time

of application processor, execution time of co-processor, and
bus time of AHB and APB bus (refer path ”a” and ”b” in
Fig. 2). Since the co-processor is executing the computation-
ally intensive cryptographic primitives, the execution time of
the co-processor is far greater than the sum of bus times and
execution time of application processor. Therefore, we use the
execution time of the co-processor as the δecu1hw and δecu1faa .

VI. RESULTS

In this section, we present our experimental set up and
evaluation results comparing timing analysis, energy analysis,

TABLE I: Performance and energy results for BED, GED, and RED architectures.
BED Implementation GED Implementation RED Implementation

In-vehicle Operational
FT Mode

Time Energy
FT Mode

Time Energy
FT Mode

Time Energy
Node Mode (µs) (µJ) (µs) (µJ) (µs) (µJ)

Sender NFT none 189 9.661 none 99.50 4.674 none 4.90 2.170
Node FT FT-RMT 207 10.581 FT-RMT 112.75 5.297 FT-SR-DMR 6.53 6.040

Receiver NFT none 184 9.406 none 102.20 4.801 none 9.00 3.996
Node FT FT-RMT 203 10.337 FT-RMT 115.42 5.422 FT-SR-DMR 9.63 9.831

response time, and QoS and behavioral reliability of the SBW
subsystem with different in-vehicle buses, viz., CAN, CAN
FD, and FlexRay.

A. Experimental Setup

Baseline Design Implementation: We have implemented the
BED (Section III) on NXP quad-core iMX6Q SABRE develop-
ment board which has a 32-bit Cortex-A9 CPU core running
Ubuntu 14.04.4 LTS at 396 MHz clock speed. The security and
dependability primitives are coded in C. OpenMP is leveraged
to provide FT-RMT.
GPGPU based ECU Implementation: We have implemented
the security and dependability primitives of GED architecture
on NVIDIA’s Jetson TK1 GPGPU. The NVIDIA’s Jetson TK1
GPGPU has 192 CUDA cores, 1 streaming multi-processor,
CUDA capability of 3.2, and runs at 852 MHz clock speed.
The application processor is ARM Cortex-A15. The FT cryp-
tographic modules are coded in CUDA 6.5 using C.
Reconfigurable ECU Implementation: We have implemented
the security and dependability primitives of RED architecture
in automotive grade Spartan-6 FPGA. The FT cryptographic
modules are coded in Verilog HDL in Xilinx ISE 14.7. We use
ModelSim for the functional verification of the design. The
total power consumption (both static and dynamic) is obtained
through XPower Analyzer packaged with Xilinx ISE 14.7 suite.
We use power and latency to compute the energy consumed
by the FT cryptographic module.
Vector CANoe based Setup: We have simulated our SBW
subsystem in Vector CANoe 8.5 for different in-vehicle buses,
viz., CAN, CAN FD, and FlexRay. We have used the following
settings for in-vehicle buses: CAN settings: baud rate = 1
Mbps, payload size = 8-bytes; CAN FD settings: baud rate
= 3 Mbp, payload size = 64-bytes; FlexRay setting: mixed
mode of operation, baud rate = 10 Mbps, payload size = 256-
byte. We have used CAPL [1] (CAN Access Programming
Language) to implement the SBW functions on ECUs.
Operational Parameters: For our SBW subsystem, we assume
the steering wheel sensor sampling rate to be fixed at 420 Hz,
that is, δs = 2.38ms. For the BED architecture, the ECU
operates at 396 MHz with an operational current of 36 mA and
the operational voltage of 1.42 V. For the GED architecture,
the operating voltage is 0.87 V and the operating current is 54
mA. For the RED architecture, the ECU operates at 50 MHz.
B. Evaluation Results
Timing Analysis: In real-time automotive CPS, system re-
sponse times must adhere to strict deadlines. Our evaluations
demonstrate that the execution times of our proposed ECU
architectures are in the range of microseconds, which conform

to the real-time constraints of the SBW subsystem (refer
Section V-A). Furthermore, results indicate that our proposed
ECU architectures attain significant speedup as compared to
a conventional ECU architecture (BED architecture). Table I
shows execution time and energy consumption profile for
processing one ECU message for BED, GED, and RED
architectures. We evaluate our architectures with both NFT and
FT operational modes. Results reveal that FT features incur
37% overhead, on average, on temporal performance.

The comparison between NFT GED and NFT BED reveals
that the NFT GED is 1.84× faster than the NFT BED.
Similarly, the FT GED is 1.79× faster than the FT BED. This
is because the GED exploits the massive computational power
of GPGPU to perform cryptographic operations. However,
the RED has better timing performance than the GED. The
NFT RED and the FT RED attain a speedup of 15.83× and
14.62× over the NFT GED and the FT GED, respectively.
Additionally, the comparison between RED and BED reveals
that the NFT RED and the FT RED provide a speedup of
29.5× and 26.4× over the NFT BED and the FT BED,
respectively. The RED is able to achieve this high speedup
because of its high-performance parallel hardware architecture
which is implemented in reconfigurable logic (FPGA). These
speedup values are calculated as the average of speedups at
the sender and the receiver ECUs. For each of the sender and
the receiver ECUs, the measurements are averaged over 100
runs.
Energy Analysis: Energy efficiency is an important metric
for automotive CPS as it implies greater fuel-efficiency for
combustion engine vehicles and longer battery lifer for hybrid
and electric vehicles. All of our proposed ECU architectures
are energy-efficient. Table I shows that the GED yields better
energy efficiency than the BED. The NFT GED and the FT
GED consumes 2× and 1.95× less energy than the NFT BED
and the FT BED, respectively. This is because of the energy
efficiency of the GPGPU architecture and less execution time
for the GED than that of the BED. When comparing RED
and BED, we observe that the RED offers 3.4× and 1.5×
improvements in energy efficiency over the BED for NFT and
FT operational modes, respectively. Results also indicate that
the NFT RED is 1.68× more energy-efficient than the NFT
GED. This is because the execution time for the NFT RED
is 15.83× lower than that of the NFT GED. However, the
FT GED is 1.47× Energy-efficient than the FT RED. The
FT GED attains this energy savings because the FT technique
(FT-SR-DMR) employed in FT RED has high static power
consumption while the FT GED has significantly lower static
power consumption.

QoS and Behavioral Reliability: We conduct experiments to
determine the impact of using different in-vehicle buses on
the QoS and behavioral reliability of the SBW subsystem
leveraging our proposed ECU architectures. Table II presents
the end-to-end delay/response time of our SBW subsystem
when using various in-vehicle buses in combination with
different ECU architectures. Results manifest that CAN FD
and FlexRay are better alternatives to conventional CAN bus as
they provide higher bandwidths and lower latencies. In order to
deliver the 48-bytes payload, CAN FD takes 18.79× less time
than CAN bus. FlexRay offers even less transport time, that is,
the payload transport time of FlexRay is 32.36× lower than
that of CAN bus and 1.5× lower than CAN FD bus. Moreover,
FlexRay provides redundant communication channels which
offers FT communication. When comparing the response time
of the SBW subsystem, the system with ECUs integrating
RED architecture yields 3.88× and 2.53× better response time
than that of the system with ECUs leveraging BED and GED
architectures, respectively. This is because the execution time
of the FT cryptographic module in RED is much less than that
of the BED and the GED architectures.

In addition to bus latency and response time analysis,
we orchestrate experiments to quantify maximum number of
allowable recomputations at SBW ECUs to yield error-free
results subject to the critical pure dealy δmax

p = 35ms and
δbus (or bus latency) as shown in Table II. Based on the
aforementioned δp constraint (refer Eq. 1 in Section V-B), we
calculate (rcc1 − 1) + (rcc2 − 1) with rtc = 2 which
gives the number of tolerable faults at HW-ECU1 and FAA-
ECU1. Results reveal that the ECUs with RED architecture
can tolerate up to 3, 459 faults with one transmission error
while the GED and the BED architectures can tolerate 231
and 127 faults, respectively, with one transmission error. It is
apparent that the RED is more robust to soft errors since it
can tolerate 27.23× and 14.97× more faults than the BED
and the GED, respectively.

TABLE II: Response time (in ms) of the SBW subsystem.

In-vehicle Operational
BED GED RED

Bus Mode
CAN NFT 4.81 4.64 4.45

latency = 0.74 ms FT 4.85 4.66 4.45
CAN FD NFT 0.49 0.32 0.13

latency = 0.12 ms FT 0.53 0.34 0.13
FlexRay NFT 0.42 0.25 0.06

latency = 0.05 ms FT 0.460 0.27 0.06

VII. CONCLUSION
In this paper, we have proposed and implemented two

novel ECU architectures, viz., GED and RED, for real-time
automotive CPS. The salient features of RED and GED are:
(1) simultaneous integration of security and dependability
primitives while adhering to stringent real-time constraints of
automotive CPS; (2) the ability to perform compute-intensive
applications, such as cryptography and audio, video, graphics,
and image processing, in an energy-efficient manner; (3)
the flexibility and scalability rendered by reprogrammability
that enable upgrading the architectures to incorporate new

applications in future; and (4) the resistance of the ECU
against fault injection and analysis attacks.

Furthermore, we have quantified and compared temporal
performance, energy, and error resilience of our proposed ECU
architectures for a SBW case study over CAN, CAN FD,
and FlexRay in-vehicle networks. Hardware implementation
results reveal that RED and GED can attain a speedup of
31.7× and 1.8×, respectively, while consuming 1.75× and 2×
less energy, respectively, than the contemporary ECU architec-
tures. Furthermore, RED and GED can tolerate 27.23× and
1.9× more transient faults, respectively, than the contemporary
ECU architectures.

VIII. ACKNOWLEDGEMENT
This work was supported by the National Science Founda-

tion (NSF) (NSF-CRII-CPS-1564801). Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views
of the NSF. REFERENCES

[1] Programming with CAPL, Dec 2004.
[2] ARM. Advanced microcontroller bus architecture (amba), Feb 2016.
[3] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,

M. Peri, and S. Pezzini. Fault-tolerant platforms for automotive safety-
critical applications. In ACM CASES, San Jose, California, Nov 2003.

[4] E. Beckschulze, F. Salewski, T. Siegbert, and S. Kowalewski. Fault
handling approaches on dual-core microcontrollers in safety-critical
automotive applications. In ISoLA, Porto Sani, Greece, Oct 2008.

[5] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems, pages 513–525. Springer Berlin Heidelberg, 1997.

[6] M. Cortez, A. Dargar, S. Hamdioui, and G. J. Schrijen. Modeling
sram start-up behavior for physical unclonable functions. In 2012 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), pages 1–6, Albuquerque, New Mexico,
Oct 2012.

[7] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici. Dynamic fault
tolerance in FPGAs via partial reconfiguration. In IEEE Symposium
on Field-Programmable Custom Computing Machines, pages 165–174,
Napa Valley, California, Apr 2000.

[8] K. Klobedanz, C. Kuznik, A. Thuy, and W. Mueller. Timing modeling
and analysis for autosar-based software development - a case study. In
2010 Design, Automation Test in Europe Conference Exhibition, pages
642–645, Dresden, Germany, Mar 2010.

[9] O. Kömmerling and M. G. Kuhn. Design principles for tamper-resistant
smartcard processors. In USENIX Workshop on Smartcard Technology
on USENIX Workshop on Smartcard Technology, page 2, Berkeley,
California, 1999.

[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experi-
mental security analysis of a modern automobile. In IEEE Symposium on
Security and Privacy, pages 447–462, Berkeley, California, May 2010.

[11] S. Kundu and S. M. Reddy. Embedded totally self-checking checkers:
A practical design. IEEE Design Test of Computers, 7(4):5–12, Aug
1990.

[12] C.-W. Lin and A. Sangiovanni-Vincentelli. Cyber-security for the
controller area network (CAN) communication protocol. In International
Conference on Cyber Security (CyberSecurity), pages 1–7, Washington,
DC, Dec 2012.

[13] A. Munir and F. Koushanfar. Design and performance analysis of secure
and dependable cybercars: A steer-by-wire case study. In IEEE Annual
Consumer Communications Networking Conference CCNC, Las Vegas,
Nevada, Jan 2016.

[14] D. K. Nilsson, U. E. Larson, and E. Jonsson. Efficient in-vehicle delayed
data authentication based on compound message authentication codes.
In IEEE 68th Vehicular Technology Conference, pages 1–5, Calgary, BC,
Sep 2008.

[15] R. Soja. Automotive security: From standards to implementation.
Technical report, Freescale, 2014.

[16] C. Wilwert, Y. Song, F. Simonot-Lion, Loria-Trio, and T. Clement.
Evaluating quality of service and behavioral reliability of steer-by-wire
systems. In IEEE ETFA, Lisbon, Portugal, Sep 2003.

