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Abstract—We investigate the paradigm of adversarial attacks
that target the emergent dynamics of Complex Adaptive Smart
Cities (CASCs). To facilitate the analysis of such attacks, we de-
velop quantitative definitions and metrics of attack, vulnerability,
and resilience in the context of CASC security. Furthermore,
we propose multiple schemes for classification of attack surfaces
and vectors in CASC, complemented with examples of practical
attacks. Building on this foundation, we propose a framework
based on reinforcement learning for simulation and analysis of
attacks on CASC, and demonstrate its performance through two
real-world case studies of targeting power grids and traffic man-
agement systems. We also remark on future research directions in
analysis and design of secure smart cities and complex adaptive
systems.
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I. INTRODUCTION
The paradigm of smart city refers to the range of In-

formation and Communication technologies (ICT) integrated
with urban systems to enhance the efficiency and effectiveness
of monitoring, management, and control of city operations
[1]. With the rapid growth of cities [2] and the consequent
rise of complexity in their management, it is widely believed
that maintaining the sustenance and resilience of future cities
will require pervasive and large-scale adoption of smart city
technologies. Thus, recent years has witnessed accelerating
advancements of such technologies in various direction that
include Internet of Things (IoT), cloud and fog computing,
smart grids, intelligent transportation systems, and many more
[3].

Such technological developments in urban management
are growingly deployed in many critical sectors, and will
soon be deeply affecting the day to day activities of citizens.
Hence, ensuring the security and resilience of smart cities is
of paramount importance. Accordingly, a number of studies
have aimed at identifying and classifying the vulnerabilities
within various components of smart cities (e.g., [4]). Yet,
the bulk of such studies are mainly focused on first-order
vulnerabilities – that is, those that arise directly from arbitrarily
reduced subsets of the smart city ecosystem and allow for
immediate disruptions. Therefore, these studies fail to capture
the threats rooted in the emergent behavior of smart city
technologies as a whole. Furthermore, the body of research
on the resilience and sustainability of smart cities (e.g., [5]) is
generally concentrated around natural and unintentional causes
of disruption, hence leaving the security perspective uncovered.

While understanding first-order vulnerabilities of smart
technologies implanted into city operations is vital, it is also
necessary to consider those that emerge from the complex

dynamics and interactions of urban operations and systems.
A prominent approach to the analysis of such dynamics is to
model cities as instances of Complex Adaptive Systems (CAS)
[5], which are characterized by complex behaviors that are the
emergent results of nonlinear interactions between a large num-
ber of components at different levels of system’s organization
[6]. CAS are generally decentralized and governed by adaptive
dynamics that enable their intrinsic adaptation and evolution
in changing environments.

Such characteristics are also inherited by many of the
technological components within the smart city paradigm:
the decentralized and adaptive operation of CAS has pre-
vailed in numerous engineering solutions for distributed system
architectures, such as smart power grids [7], autonomous
navigation [8], and IoT [9]. The CAS-based mechanisms of
such distributed systems is indeed a promising approach to the
challenging task of control and management of the increasingly
complex and heterogeneous smart cities. In particular, the Self-
organization aspect of CAS enables the emergence of order
and pattern from uncoordinated actions of autonomous agents
in multi-agent distributed settings [10].

While the distribution of functionalities and capabilities
among multiple agents in CAS seemingly relieves the threats
posed by single points of failure, the complexity of dy-
namics in such systems gives rise to unique challenges in
quantifying and ensuring their resilience and robustness in
hostile environments and adversarial conditions. The body
of work on the sustainability of smart cities presents many
contributions towards analysis of resilience against direct (i.e.,
first-order) perturbations, current state of the art leaves major
gaps in understanding and enhancement of resilience against
adversarial actions that target the higher-order dynamics of
smart cities.

This paper aims to develop a consistent and quantitative
approach towards analysis and enhancement of resilience in
Complex Adaptive Smart Cities (CASCs) against adversarial
actions. Accordingly, the main contributions of this paper are
as follows: (1) We propose quantitative definitions of attack,
vulnerability, and resilience in the context of CASC security.
(2) We develop multiple schemes for classification of attack
surfaces in CASC, and discuss generic instances of active
and passive adversarial actions targeting these surfaces. (3)
We propose a framework based on reinforcement learning for
simulation and analysis of attacks on CASC. (4) We demon-
strate the practical application of our proposed framework in 2
case studies: induction of cascade failures in power grids and
disruption of traffic flow.

The remainder of this paper is organized as follows: Section



II provides an overview of CAS and the relevant background.
Section III details our proposed definitions of attack, vulner-
ability, and resilience. Section IV presents classifications of
vulnerabilities and attack surfaces in CASC, followed by the
proposal of a framework for simulation of adversarial actions
and analysis of their impact on CASC in Section V. Section VI
demonstrates the application of this framework in two practical
case studies. Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we briefly introduce the paradigm of
complex systems and their characteristics to provide the reader
with an overview of fundamental concepts and notions required
for the remainder of this paper. It must be noted that this
background is by no means comprehensive, and the interested
reader may refer to sources such as [11] for in-depth introduc-
tions to CAS.

A. Complex Adaptive Systems
Complexity, as a quantifiable measure, is yet to obtain a

unified and consistent definition. From the multitude of defini-
tions that have emerged from the field of complexity science
[12], we abide by the definition presented by Mitchell [6]: “A
complex adaptive system is a system in which large networks
of components with simple rules of operation and no central
control give rise to complex collective behavior, sophisticated
information processing, and adaptation. Such systems exhibit
nontrivial emergent and self-organizing behaviors.”

Accordingly, the most general characteristics of CAS are
identified as: (1) Large numbers of constituent elements and
interactions; (2) Non-decomposability, i.e., components cannot
be separately studied due to interactions; (3) Nonlinearity
of dynamics and behavior; (4) Various forms of hierarchical
structure; (5) Emergent behavior; (6) Self-organization; (7) Co-
evolution with other complex entities or the environment.

The concepts of emergence and self-organization are of
particular significance in the scope of this work. Emergence
in CAS refers to the occurrence of properties and behavior in
a system that are not present in the constituent components,
i.e., global behaviors are emergent results of local interac-
tions. Similarly, Self-Organization is the emergence of global
coherence out of local interactions. Natural instances of self-
organization include the swarming formation of birds in flight,
and the emergence of cognitive abilities from interactions of
neurons in the brain. In the context of smart cities, the flow
of vehicular traffic is a prominent instance of self-organized
behavior which can be guided by smart traffic management
systems via traffic signals [13].

B. Vulnerability and Resilience of CAS
The resilience of complex systems has been the subject

of active research in diverse disciplines, ranging from ecology
[14] to power distribution systems [7] and even smart cities [5].
Yet, the bulk of available literature on this topic emphasize
on resilience of CAS to naturally occurring and random
perturbations. Amid the spectrum of definitions of resilience
proposed in such works [15], one of the most general is
given by Hollangel et al. [16] as: “The ability of a system
to endure failure and recover from mishaps by restoring its
capacities”. This definition captures the objectives of system-
level studies, yet it fails to satisfy the requirements of security
analyses. While recovery from failure may demonstrate the
long-term sustainability of system’s operations, the security

consequences of short-term failures may be catastrophic. For
instance, temporary disruption of power grids or traffic flow,
however technically recoverable, may incur severe damages
to a city’s economy. Therefore, there is a crucial need for
security-oriented alternatives to this definition.

Similarly, the concept of vulnerability in CAS is defined
either too loosely, or too ad-hoc. For instance, [17] defines
vulnerability as the system’s inability to resist stresses, which
may be exploited by threats and hazards. On the other hand,
[18] provides a network-oriented definition as links or nodes
whose removal adversely impact the functions of a complex
network. It is evident that a generic and quantitative definition
of vulnerability is needed to form the basis of a computational
framework for analysis and measurement of security in CAS.

C. Modeling Approaches to CASC
Abstraction and capturing the dynamics of complex smart

cities is an active topic of research, with many proposals and
modeling frameworks developed through the past decades.
However, the bulk of such approaches may be fitted within
three classes of models, namely dynamical systems, agent-
based models, and complex network models [6]. Having mul-
tiple approaches enables various levels of abstraction for high-
dimensional CASC, thereby providing multiple perspectives
for capturing the structure and dynamics of smart cities in the
context of vulnerability analysis.

The first of these approaches is based on the fact that smart
cities are dynamical systems, meaning that their states change
as a function of time. In this perspective, the CAS dynamics
of smart cities can be modeled as [6]:

ẋ(t) = f(x(t), β(t)) (1)

Where ẋ(t) is the first-order derivative of x with respect
to time t, x = (x1, x2, ..., xn) is the n-dimensional state
of CAS, β is the state of the environment (or alternatively,
control input), and f is the dynamics of the system. The
set of all possible configurations of x is termed the phase
space of the system, henceforth denoted by X . A solution
x(t) to the equation 1 constitutes a trajectory in phase space.
Any trajectory is uniquely defined by the initial conditions,
x(0) ≡ x0. Accordingly, the Time-T Flow φT for initial
conditions x(0) is defined as φT (x(0)) = x(T ).

In dynamical systems, an attractor is a bounded region in
phase space to which trajectories with certain initial conditions
converge or come arbitrarily close. Formally, an attractor is an
invariant set Λ ∈ X , where trajectories of perturbations that
lead to states outside of Λ eventually return to Λ. Attractors
may be isolated points, limiting cycles, or more complex
objects in the phase space.

A basin of attraction Ω(Λ) is the set of all states which
fall on trajectories that lead to attractor Λ. Formally,

Ω(Λ) = {x ∈ X : lim
t→∞

φt(x) ∈ Λ} (2)

Accordingly, the basin boundary ∂Ω of a CAS is defined as
the set of states that are not in any basin. Formally:

∂Ω = X −
⋃
i

Ω(Λi) (3)

Even though the dynamical model provides a fundamental
mathematical perspective on the behavior of CAS, the ab-
straction and computational aspects of this model are prone
to the curse of dimensionality and thus are severely restricted
in high-dimensional smart city systems. Therefore, alternative
models are often used to simplify the dynamical representation



and abstraction of such CAS. Accordingly, agent-based models
are constructed by capturing the behavior of individual com-
ponents in the system, and employing tools from game theory
(e.g., [10]) and similar fields to roll-out the natural dynamics of
interactions among those components. Alternatively, network-
based models adopt a connectionist approach to construct a
network abstraction based on the relationships and interactions
of various components in the system (e.g., [19]).
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Fig. 1: Instances of potential attacks on smart cities.

III. THREAT MODEL AND METRICS

The adaptive dynamics of smart cities gives rise to a
variety of vulnerabilities and attack surfaces. By definition, the
macro-scale behavior of such systems is the emergent result of
micro-scale actions of local or individual elements. Therefore,
adversarial perturbations of micro-scale structure and dynamics
may result in amplification of perturbations and manipulation
of the macro-scale behavior.

To ensure a consistent and comprehensive study of such
attacks, we first develop suitable definitions of attack, vulner-
ability, and resilience in CAS. We differentiate between two
types of attacks, namely passive and active attacks. Passive
attacks aim at exposure of structural and dynamical properties
of the targeted CAS, and do not require exertion of additional
input to the system. Instances of such attacks are network
traffic analysis [20] and inference of dynamics [19]. On
the other hand, Active attacks involve the implementation of
adversarial actions to achieve an adversarial objective. Building
on the dynamical model of Section II-C, we define adversarial
action as the intentional manipulation of either the state or
dynamics of a CASC system, such that the resulting state-
space trajectory passes through states, which may include
states outside of desired basins of attraction, states within
undesired submanifold of the phase space (e.g., undesired
basins of attraction), or ill-defined states within a modified
phase space. Accordingly, the modes of adversarial actions
can be categorized as those perturbing the state configuration
of CASC, and those that manipulate the dynamics of CASC,
formalized as follows:

1) State Manipulation: Let γ(xt) be the perturbation to
state xt ∈ X , i.e., the perturbed state is obtained via x

p
t =

xt + γ(xt). The problem of adversarial state manipulation is
to devise the function γ(xt) such that at an arbitrary time T :

xT =

∫ T

t0

f(xt + γ(xt), βt)dt ∈ X∗ (4)

Where t0 is the initial time, and X∗ ∈ X
′

is the set of
states within the space of undesired states X

′

which conform
to adversarial objectives. It is noteworthy that a sustainable
impact is imposed when the adversary aims for driving the
target into X∗’s basins of attraction.

Alternatively, if the objective is to reach specific trajectories
µ(t) in the space of undesired trajectories M rather than
particular states, the problem can be rearranged as devising
γ(xt) s.t. some measure of distance between the original
and desired trajectory becomes smaller than an arbitrary error
threshold ǫ, i.e.,

‖ẋ(t)− µ̇(t)‖ = ‖F (xt + γ(xt), βt)− µ̇(t)‖ < ǫ

2) Dynamics Manipulation: Let λ(xt, βt) be the perturba-
tion to the environment (alternatively, it can be viewed as con-
trol input). The problem of adversarial dynamics manipulation
is to devise a suitable control perturbation λ(xt, βt), such that
at an arbitrary time T :

xT =

∫ T

t0

f(xt, βt + λ(xt, βt))dt ∈ X∗ (5)

It must be noted that X∗ is not necessarily a subset of X , as
the phase space may shift due to perturbations. Alternatively,
the problem of reaching specific trajectories can be formulated
similarly to the case of state manipulation, with the following
optimization objective:

‖ẋ(t)− µ̇(t)‖ = ‖F (xt, βt + λ(xt))− µ̇(t)‖ < ǫ

With the concept of attack formalized, we can construct
suitable measures of vulnerability and resilience on the same
grounds. We adopt a well-established fact from the realm of
cyber-security that no system can be completely secure against
all possible attacks. Hence, the objective of securing a system
becomes deterrence of attacks in an economic sense, namely
making successful attacks as costly as possible. Accordingly,
we define the vulnerability of an element (state, trajectory,
or dynamics) in a CASC to a specific adversarial action,
as the inverse of the minimum amount of cost incurred to
the adversary to impose the maximum achievable cost to the
targeted CASC, via implementing the adversarial action on the
designated element. This definition assumes that adversarial
cost Cadv ≥ 1, and hence the value of vulnerability is in
the range [0, 1], whose unit is determined by the dimensions
of adversarial cost Cadv . In a similar manner, we define the
resilience of a CAS against a certain attack as the minimum
cost imposed on the adversary to successfully implement that
adversarial action and force the CAS into an undesired state or
trajectory. The selection of adversarial and CASC cost metrics
is highly dependent on the context of analysis. One simple
instance of choices for adversarial cost can be the minimum
number of perturbations required for a successful attack. A
similar choice for the CASC cost is the loss of connectivity in
the network model of its interactions.

IV. CLASSIFICATION OF ATTACK SURFACES

Attack surfaces are structural and dynamical components
of CASC that may be targeted in active and passive attacks.
In this section, we present three schemes categorizing such
components, and provide attack instances for each identified
component.

1) CIA-based: The first approach concentrates on the se-
curity dimensions being attacked. The general dimensions of
security are Confidentiality, Integrity, and Availability, form-
ing the CIA triad of security. Confidentiality refers to the



restriction of unauthorized access to protected information.
Examples of attacks on confidentiality in CAS include the
inference of states, dynamics, and interaction protocols in
a self-organizing swarm of UAVs. Integrity is maintaining
and assuring the accurate functioning of the system in the
intended manner. An instance of corresponding attacks is
manipulation of a distributed autonomous navigation system
to induce collisions. Availability is assuring the uninterrupted
operation of the system. Induction of cascade failures in power
distribution systems is a well-established instance of such
attacks on CASC.

2) DDDAS-based: Another approach to classification of
attack surfaces is based on the paradigm of Dynamic Data-
Driven Application Systems (DDDAS). The decentralized
adaptive behavior of CASC implies the existence of a feed-
back control loop in the constituent components. Accordingly,
each component of such CACS monitors the changes in its
environment, analyzes the observations and its internal state
with respect to local rules and objectives, and adjusts its oper-
ating parameters accordingly. This process can be accurately
captured within the framework of DDDAS. A DDDAS is a
symbiotic feedback control system, which can dynamically
analyze the state of system and its environment to control and
determine when, where, and how it is best to gather additional
data, and in reverse, can dynamically steer the applications
based on the obtained measurements [21]. The operational
cycle of an element in a generic distributed smart city system
comprises of 4 components:

• Sensing: Observing the state of agent’s environment
and retrieving relevant information that may be dis-
seminated by other agents

• Information Sharing: Communicating agent’s current
state and observations with other agents

• Data Fusion and Analytics: Integration and processing
of observed and retrieved information

• Self-Configuration: Configuration of agent’s functional
parameters according to processed information

As illustrated in Figure 1, each component of the DDDAS
cycle constitutes attack surfaces that can be the subject of
adversarial actions targeting one or a combination of the CIA
dimensions. However, as shown in Table I, under this schemes
some attacks may find overlapping roots between different
component.

3) Functionality-based: We also propose a more general
functionality-based approach to classification. The building
blocks of CAS are its structure and topology, dynamics of in-
teractions, and the internal dynamics of each constituent agent.
Accordingly, we further categorize the attack surfaces of CAS
into those stemming from the Network Structure, Cooperation
Protocolos, or Actuation Functions, detailed below:
A. Attacking the Network Structure

As discussed in Section II-C, CAS can be modeled as net-
works of interacting agents. Depending on the model’s context
and objective, this network may represent the communication
links between agents, their interactions, dependencies, or other
types of relationships. As is the case with distributed net-
worked systems, such as communications and social networks,
the intrinsic network structure of CASC gives rise to a number
of potential vulnerabilities that can be exploited to mount
passive and active attacks against the system. By means of
traffic analysis [20] and inference attacks [19], adversaries can
target the confidentiality dimension of CASC to identify the

topology and dynamics of their networks. Knowledge of the
network topology enables the adversaries to optimize denial of
service attacks by analyzing the structure of their target and
determining the most critical regions [20]. To further expand
on this surface, consider the case of a self-organizing swarm
of UAVs, as illustrated in Figure 2. The inter-UAV network
depicted in this figure is a graph with 2 hubs (i.e., Nodes 3 and
4), through which a large portion of network flows pass. If the
adversary aims a jamming attack at only these two hubs, the
network becomes completely disconnected, thereby the entire
operation of the system is disrupted at minimal cost to the
adversary. Under certain circumstances, this type of attack may
cause cascading effects that result in total system failure over
time. As example of which is cascade failures in power grids,
further detailed in Section VI.

65

4 3

21

Inter-UAV Link

Fig. 2: Example of topological vulnerability

B. Attacking Cooperation Protocols
Considering the independent and self-interested nature of

agents in CASC, stabilization and efficiency of many real-
world applications of such systems necessitate the implementa-
tion of rules and protocols to induce and maintain cooperative
interactions between agents. For instance, formation control
and navigation of UAV swarms require the sharing of posi-
tional information among UAVs, as well as their coordination
of navigational parameters. Implementation of cooperation
protocol creates another source of attack surfaces. Adversaries
may target the confidentiality of CASC via passive sniffing of
shared information through either insider and outsider attacks.
This type of passive eavesdropping enables further active
attacks through inference and identification of objectives and
system dynamics.

The integrity of such systems can be targeted in various
ways. By spoofing legitimate agents, adversaries can inject
false data into the information sharing pipeline of CAS. Also,
spoofed, compromised, or malicious insider agents may falsify
their resource requirements, or even pose as several agents to
gain unfair access to shared resources. In the domain of dis-
tributed wireless networks, this type of exploitation is known
as Sybil attack [22]. Furthermore, in systems with constrained
information sharing capacities, adversarial perturbation of the
environment may lead to sharing of incorrect or incomplete
information. For instance, consider the case of a UAV swarm
which relies on individual reporting of observed obstacles
for collision avoidance. If the reporting protocol limits the
number of reported obstacles to the n nearest objects observed
by a UAV, an adversary may spoof or generate m >> n
minor obstacles in the vicinity of the UAV to prevent it from
informing rest of the swarm about major nearby obstacles.

Attacks on the availability aspect may also come in differ-
ent forms. Spoofed, compromised, or malicious insider agents
may act as information blackholes [22] by tactically refusing
to share their information at particular times. In CASC that



rely on multi-hop communications, this attack can be more
damaging if the agent stops forwarding information received
from other neighbors as well. Another type of attack is
based on spoofed, compromised, or malicious insider agents
disseminating certain information that cause termination of
cooperation. In our example of UAV swarm, transmission of
messages such as “mission accomplished”, “mission failed”, or
radio silence signal in tactical scenarios, may cause the cooper-
ative process to end. Furthermore, if the cooperation protocol is
not well-designed, broadcast of certain resource constraints or
environmental conditions may result in prevalence of agents’
selfishness over cooperation. This condition may be induced
through either dissemination of fake information, or adversarial
manipulation of the environment [19].
C. Attacks on Actuation Functions

The main objectives of CASC are realized by each agent
via actuation functions. In the example of UAVs, actuation
functions are cyber-physical controllers of motion and commu-
nications. In general, the ultimate goal of all attacks introduced
so far is indirect manipulation or disruption of actuation
functions. Adversaries may also directly target the actuation
of CASC through attack surfaces in actuation mechanisms and
functions. Mounting attacks on confidentiality of actuation may
be in the form of parameter inference. Obtaining knowledge
of operating parameters through side-channel attacks enables
the adversary to derive a more accurate estimation of system’s
state and dynamics, thereby allowing the optimization of active
attacks against the system. Also, in competitive CAS, complete
knowledge of an agent’s operating parameters may provide
other agents with an unfair advantage. For instance, consider
a CAS setup to automate the sharing of information on cyber
attacks among corporations [23]. In this scenario, agents aim
to share the minimal amount of data required to preserve the
long-term benefits of information sharing. If an adversarial
agent is able to estimate the parameters used by another agent
in filtering and disseminating information, it may allow the
adversary to infer the undisclosed portion of agent’s informa-
tion. A sophisticated attack in such incomplete information
systems can be the adversarial disclosure of parameters to
competitors, thereby causing the system dynamics to diverge
from a beneficial equilibrium. Economic and political paral-
lels of this phenomenon are instances of insider trading and
whistleblowing (e.g., [24]).

The integrity of actuation functions may be targeted via
manipulation of the environment or sensory observations. In
an autonomous fleet of self-organizing vehicles, calculated
manipulation of the visual input to a vehicle may result in an
adversarial example [25] for the machine learning component
of the system. Adversarial examples are minimally perturbed
inputs that cause misclassifications in machine learning algo-
rithms. For instance, minor changes in a speed sign on the
side of a street can result in its misclassification as a stop
sign by an autonomous vehicle, causing it to stop in an unsafe
location [26]. In some cases, even spoofed perturbations of
the environment is sufficient for manipulation of actuation
functions. A real-world example of such cases is the Automatic
Collision Avoidance System (ACAS) utilized by many of
today’s commercial aircraft [26]. This system generates motion
advisories according to the position and heading of other
aircraft in the environment, obtained from an unencrypted,
open protocol known as ADS-B. An adversary may simply
fake the presence and trajectory of nonexistent aircraft by

spoofing, ADS-B signals, which can lead to ACAS advisories
that change the trajectory of targeted aircraft [26].

Similar attacks can also target the availability of actua-
tion functions. Adversaries may manipulate the environment
such that the actuation functions of CASC agents fall within
undefined or terminal states. In our UAV example, induction
of emergency conditions through environmental or sensory
manipulation can drive targeted agents into safe modes, which
in many cases trigger automatic Return-to-Base (RTB) or
emergency landing procedures [26].

Table I presents the classifications of the sample attacks
discussed in this section.

V. SIMULATION FRAMEWORK

As an approach towards analysis of impact in attacking
the emergent dynamics of CASC, we propose a framework
for simulation of adversarial actions against generic CASCs.
With the aim of analyzing the maximum impact of attacks,
this framework is designed to automatically derive the optimal
sequence of adversarial actions against CASC models. Also,
our framework supports the analysis of both whitebox and
blackbox attacks, meaning that the adversary can be con-
sidered to have complete, partial, or no a priori knowledge
of the system dynamics. Furthermore, this framework allows
for arbitrary designation of adversarial goals (e.g., network
disruption, actuation manipulation, etc.), and can be configured
for arbitrary types of adversarial actions.

The initial step in this framework is to obtain an estimation
of dynamics in the targeted CASC from time-series observa-
tions of the system. For simulation of blackbox attacks, this
can be achieved through a variety of methods developed for
identification of nonlinear dynamics, such as utilization of deep
neural network (e.g., [27]) and generative adversarial networks
[28]. When partial knowledge of the system is assumed, the
estimation technique can be based on a generic model of the
dynamics with unknown model parameters, which may be
estimated via statistical and machine learning techniques (e.g.,
[19]). As for the simulation of whitebox attacks, this estimation
can be fixed to a complete dynamical model of the system.
Examples of each case are presented in Section VI.

With the initial estimate of dynamics at hand, the next step
of this framework is to create a secondary simulation of the
targeted system in order to obtain the optimal attack policy
π∗(S), which maps any observed state S of the estimated
system to an optimal action AS . This action corresponds to
one the adversarial actions defined in the initial configuration
of simulations, Instances of which are node removals for
attacks on network structure, sensory overload for attacks on
cooperation protocols, and crafting adversarial examples for
manipulation of actuation functions.

Accordingly, we propose reinforcement learning (RL) as a
promising approach to the problem of policy optimization. RL
enables the learning of optimal decision making in choosing
control (i.e., action) sequences that maximize a certain objec-
tive based on some reward signal [29]. A major advantage of
RL is in its ability to learn a model of its environment through
exploration and trial and error. Further, recent advances in
deep RL have demonstrated the feasibility of applying RL to
high-dimensional complex environments, such as autonomous
driving and playing Atari games [30]. Hence, this approach is
a promising candidate for deriving control policies in complex
systems.



Functional Surface Attack Example CIA Dimension DDDAS Surface Attack Type Attack Mode

Network Structure Traffic Analysis, Topology Inference C IS Passive N/A
Topological Disruption A IS Active State
Cascade Induction I, A IS, SC Active Dynamics

Cooperation Protocols Sniffing C IS Passive N/A
Sybil I, A IS, SC, S Active State/Dynamics
Information Manipulation I, A SC, AN Active Dynamics

Actuation Functions Parameter/Dynamics Inference C IS, SC Passive N/A
Competitive Intelligence C IS, SC, AN Passive N/A
Adversarial Examples I, A S, AN, SC Active State
Spoofing I, A S, AN, SC Active State / Dynamics
Induction of Terminal States I, A S, AN, SC Active State

TABLE I: Classification of sample attacks - C, I, and A stand for Confidentiality, Integrity and Availability, respectively. For
DDDAS attack surfaces, S is Sensing, IS is Information Sharing, AN stands for Analytics, and SC is Self-Configuration.

The RL problem is described by the Markov Decision
Process (MDP) tuple (S,A, P,R), where S is the set of
reachable states in the process, A is the set of available actions,
R is the mapping of transitions to the immediate reward, and P
represents the transition probabilities (i.e., system dynamics).
At any given time-step t, the MDP is at a state st ∈ S,
which represents the current configuration of simulated CASC.
The reinforcement learning agent’s choice of action at time t,
at ∈ A causes a transition from st to a state st+1 according to
the transition probability P at

st,st+a
. The agent receives a reward

rt = R(st, at) ∈ R for choosing the action at at state st.
Interactions of the agent with MDP are captured in a policy

π : S → A. The objective of reinforcement learning is to find
the optimal policy π∗ that maximizes the cumulative reward at

any time t, denoted by the return function R̂ =
∑t′=t

T ψt′−trt′ ,
where ψ < 1 is the discount factor that accounts for the
diminishing worth of rewards obtained further in time, hence

ensuring that R̂ is bounded.
An approach to this problem is the Action-Value Function

optimization algorithm or Q-Learning. In every iteration of this
technique, the optimal value of each action is calculated as the
expected sum of future rewards, assuming that every action
taken after the current choice follows the optimal policy. Once
the optimal policy is obtained from the secondary simulation,
it is implemented on the primary simulation to observe the
impact for a user-defined number of time-steps. At this point,
the new observations are fed back to the estimation algorithm
to improve adversary’s model of target dynamics, and derive
the optimal attack policy for the updated model. This iterative
process is executed until the user-defined criteria for attack
success or termination are reached. At every iteration of Q-
Learning, the process selects its estimation of the best possible
action, which is one of the designated adversarial actions
designated in the configuration of attack simulation.

This process is formalized in Algorithm 1. Before exe-
cution, this algorithm must be integrated with a dynamical
simulation or physical prototype of the target system. Also,
the user shall define a technique for estimation of dynamics,
designate an attack objective, the set of permissible adversarial
actions, the cost function of attack, and the criteria for termi-
nation of Q-learning. Upon execution, the algorithm iteratively
observes the state of the target system, and updates its estimate
of target’s dynamics according to a pre-defined technique (line
5). This estimate is then used to create a simulation of target
from an adversary’s perspective, which is then explored via
Q-learning to obtain an optimal attack policy based on current
estimate (line 6). This policy is then applied to the original
simulation or prototype of the target (line 7), and the simulated
adversary’s observation of target’s state is updated according
to the resulting state of the target (line 8). This process is

Algorithm 1: Attack Simulation Framework

Input : dynamical simulation, Attack cost function C,
objective O, set of actions A, termination criteria
X

Data: initial target configuration G0, reward/cost of
attack R, current configuration G, policy π

Output: optimal reward/cost of attack R, final
configuration G∗, optimal policy π∗(.)

1 R← 0

2 G← G0

3 Initialize π to a random distribution
4 while R < O do

5 U ← EstimateDynamics(G,X)

6 R, π ← QLearning(SimulateDynamics(G,U, π),

G,U,X,C)

7 Implement a← π(G)

8 Update G

9 end

repeated until the adversarial reward reaches the designated
attack objective (line 4).

It is noteworthy that this framework can only succeed if
the attack objective is reachable from the initial state of the
target, and with the defined set of actions. Otherwise, this
algorithm will provide a best-effort performance in coming
as close as possible to the objective. Also, the accuracy
and convergence of this algorithm is heavily dependent on
the dynamic estimation mechanism. The choice of estimation
technique and its updating criteria must be such that the
estimation errors do not consistently accumulate, and remain
bounded over a large number of iterations.

Furthermore, Algorithm 1 does not intrinsically account for
constraints on execution time, therefore such limitations must
be implemented within attach the cost function. Similar to the
reachability criteria of optimality, if time constraints of the
problem fall below the time required for reaching the optimal
answer, this algorithm still performs a best-effort search for
optimal attacks and potential impact. Such best-effort results
are indeed representative of practical worst-case impact levels
under the conditions modeled by user-defined parameters.

VI. CASE STUDIES

To study the performance and feasibility of our proposed
framework, we investigated its application to 2 real-world CAS
scenarios, namely: Inducing cascade failures in power distri-
bution networks and disruption of traffic flow via localized
attacks. For each case study, we describe the objective and
classify the type of attack according to the schemes introduced
in Section IV. We then report the approach and experimental
setup, and present the results in terms of quantitative impact
and vulnerability.



A. Cascade Failures in Power Grids
Power distribution networks constitute a well-known in-

stance of CAS [7] that are susceptible to cascading failures
triggered by malfunctions in one or more local components,
such as relays and transmission lines. In such cases, the load
of a failed component is balanced onto neighboring nodes,
causing them to overload and fail as well [31]. In this case
study, the attack objective is to analyze the maximum possible
disconnection of a power network by induction of cascading
failures through sequential removal of transmission lines in
a simulated power grid. The case of sequential attacks on
power grids is recently studied by Yan et al. [31], who also
use a an approach based reinforcement learning to analyze
the impact of such attacks. One major difference between the
methodology of [31] and this case study is the assumption
of a blackbox attack in our approach, which circumvents the
issues caused by modeling challenges in the study of cascading
power grid failures. Moreover, this case study demonstrates an
instance of applying a dynamical system model to analysis of
vulnerabilities in CASC.

1) Objective and Classification: The objective of this at-
tack is to disconnect the minimum number of transmission
lines one at a time, such that the system collapses. This attack
targets the network structure to compromise the Availability
dimension of CIA by implementing an adversarial action to
manipulate the state of this CAS.

2) Experiment Setup: The benchmark network used in
this experiment is a mid-size IEEE RTS-79 architecture. This
system is comprised of 24 buses, 38 transmission lines, 17
load buses, and 10 generating units, with a total generation
capacity of 3405MW, and a peak load of 2850MWs. A line is
considered to be alive if it operates with a load that is smaller
than its capacity. Once this threshold is reached, the line fails
and all of its load is distributed equally among the nodes that
are directly connected to it.

The dynamical simulation was implemented in Python
using the PyPSA toolbox. Following the setup of [31], the
attack objective was set to cause at least 8 lines failures,
while minimizing direct disconnection of lines by the attacker,
and maximizing the disconnections resulting from cascading
failures. We constrained the maximum number of iterations
of each simulation to 500, and repeated each full simulation
100 times. As for the estimation method, we adopted the
architecture proposed in [32] for a convex-based Long-Short
Term Memory (LSTM) neural network to approximate the
nonlinear dynamics of the power grid.

Figure 3 depicts the obtained results, avereged over 100
repetitions. It can be seen that our framework achieves an
outage of 8.6 lines with only 3 direct node removals, thereby
demonstrating the applicability of our framework in simulating
emergent attacks in real-world CAS. Accordingly, the vulnera-
bility measure of this network structure to node removal attacks
is 1

3
= 0.34.

B. Disruption of Traffic Flow
Recent studies have shown that traffic signals are vulner-

able to a variety of attacks, ranging from physical tamper-
ing to remote bypassing of authentication and triggering of
fault-handling mechanisms [33]. Such vulnerabilities provide
motivated adversaries with the means for disruption of the
traffic flow in a city by sequential tampering of a few signals
[13]. In many traffic signals, fail-safe mechanisms prevent an
adversary from directly manipulating the signal. However, it is
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Fig. 3: Induction of cascade failure in power grids via direct
targeting of t=2 and t=3 lines

still possible for the attacker to tamper with the scheduling of
compromised traffic signals. This can then be used to maximize
the impact of attack in terms of minimizing city-wide traffic
flow. Laszka et al. [13] report a study on the vulnerability of
smart cities to such attacks and propose a heuristic algorithm to
analyze the impact of sequential tampering of traffic signals in
maximizing traffic flow. To demonstrate the generality of our
framework, we perform a similar experiment with the same
premises as that of [13] and compare the efficacy of their
algorithm with our RL-based proposal.

1) Objective and Classification: The objective of this at-
tack is to tamper with the internal schedules of traffic signals
such that the total travel time in the transportation network
is dramatically increased. Similar to [13], we assume that the
attacker can compromise at most B ≤ |S| intersections at any
given time, where |S| is the total number of intersections. This
attack targets the network flow and structure to compromise the
Availability dimension of CIA by implementing an adversarial
action to manipulate the state of this CASC.

2) Experiment Setup: To maintain the ability of compar-
ative analysis, our experiment setup follows that of [13]: we
performed traffic flow simulations in SUMO (Simulation of
Urban MObility)1 using the same map as that of [13] with 5
major intersections as possible targets S for the attack. The
default configurations for these traffic signals were selected
based on [13]’s parameters which aim to minimize total travel
time during normal operation 2.

Considering a model of traffic flow that represents peak
commutes during an afternoon, we measure the average travel
time as the metric of effectiveness for the attack. Figure 4
depicts the obtained results, avereged over 100 repetitions.
It illustrates the performance of our proposed framework in
analyzing such attacks compared to that of [13]. It can be
seen that our generic approach performs as well as that of a
heuristic algorithm developed for the particular case of traffic
flow attacks, thereby verifying the general applicability of our
framework. VII. CONCLUSION

We introduced the paradigm of adversarial attacks targeting
the nature of dynamics in Complex Adaptive Smart Cities
(CASCs). Aiming to develop a comprehensive foundation for
analysis of such attacks, we presented three approaches to
the modeling of CASC as dynamical, data-driven, and game-
theoretic systems. We developed suitable definitions of attack,

1http://sumo.dlr.de/
2http://aronlaszka.com/data/laszka2016vulnerability.zip



Fig. 4: Maximal traffic disruption via resource-constrained
tampering of traffic signals

vulnerability, and resilience in the context of CASC Security,
and introduced three schemes for classifying threats based on
security dimensions, data-driven abstraction, and fundamental
functionalities of CASC. Building on this foundation, we
proposed a framework for simulation and analysis of attacks
on CASC, and demonstrated its performance in vulnerability
analysis of power grids and transportation networks. These
case studies also demonstrate the need for novel techniques and
methodologies for threat detection and mitigation in CASC.
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